Resonance in multicomponent linear systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2021), pp. 74-79

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider large systems of point particles with arbitrary quadratic interaction and harmonic force acting on one fixed particle. Necessary and sufficient conditions for resonance and for uniform boundedness of trajectories are obtained. In the case of resonance, we obtained the large time asymptotics for energy maxima.
@article{VMUMM_2021_3_a11,
     author = {A. A. Lykov and V. A. Malyshev and M. V. Melikian},
     title = {Resonance in multicomponent linear systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {74--79},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a11/}
}
TY  - JOUR
AU  - A. A. Lykov
AU  - V. A. Malyshev
AU  - M. V. Melikian
TI  - Resonance in multicomponent linear systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 74
EP  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a11/
LA  - ru
ID  - VMUMM_2021_3_a11
ER  - 
%0 Journal Article
%A A. A. Lykov
%A V. A. Malyshev
%A M. V. Melikian
%T Resonance in multicomponent linear systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 74-79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a11/
%G ru
%F VMUMM_2021_3_a11
A. A. Lykov; V. A. Malyshev; M. V. Melikian. Resonance in multicomponent linear systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2021), pp. 74-79. http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a11/