A subclass of solutions for equations of a reduced atmospheric model
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 63-67
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We deal with a special subclass of solutions for the three-dimensional system of ideal polytropic gas equations corresponding to an atmospheric model. The properties of such solutions are completely characterized by a nonlinear system of ordinary differential equations of higher order. We establish that, in contrast to the corresponding two-dimensional model, all its singular points are unstable. We also find some first integrals of this system. It is shown that, in the case of axial symmetry, it could be reduced to a single equation. The system is integrable in the particular case when the adiabatic exponent is equal to 2.
@article{VMUMM_2021_1_a11,
     author = {M. Turzynsky},
     title = {A subclass of solutions for equations of a reduced atmospheric model},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     year = {2021},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/}
}
TY  - JOUR
AU  - M. Turzynsky
TI  - A subclass of solutions for equations of a reduced atmospheric model
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 63
EP  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/
LA  - ru
ID  - VMUMM_2021_1_a11
ER  - 
%0 Journal Article
%A M. Turzynsky
%T A subclass of solutions for equations of a reduced atmospheric model
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 63-67
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/
%G ru
%F VMUMM_2021_1_a11
M. Turzynsky. A subclass of solutions for equations of a reduced atmospheric model. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/

[1] Vallis G.K., Atmospheric and oceanic fluids dynamics. Fundamentals and large-scale calculation, Cambridge Univ. Press, Cambridge, 2006

[2] Obukhov A.M., “O geostroficheskom vetre”, Izv. AN SSSR, 13 (1949), 281–306

[3] Rozanova O.S., “Classes of smooth solutions to multidimensional balance laws of gas dynamic type on Riemannian manifolds”, Trends in Mathematical Physics Research, ed. C.V. Benton, Nova Sci. Publ., Hauppauge, N.Y., 2004, 155–204

[4] Rozanova O.S., “Solutions with linear profile of velocity to the Euler equations in several dimensions”, Hyperbolic Problems: Theory, Numerics, Applications, 2003, 861–870, Springer, Berlin

[5] Rozanova O.S., Turzynski M.K., “On systems of nonlinear ODE arising in gas dynamics: application to vortical motion, differential and difference equations with applications”, Springer Proc. Math. and Stat., 230, Springer, Berlin, 2018, 387–398

[6] Rozanova O.S., Turzynski M.K., “Nonlinear stability of localized and non-localized vortices in rotating compressible media, theory, numerics and applications of hyperbolic problems”, Springer Proc. Math. and Stat., 236, Springer, Berlin, 2018, 567–580

[7] Turtsynskii M.K., “O svoistvakh reshenii uravnenii gazovoi dinamiki na vraschayuscheisya ploskosti, otvechayuschikh dvizheniyam s odnorodnoi deformatsiei”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 2, 39–45

[8] Ovsyannikov L.V., “Novoe reshenie uravnenii gidrodinamiki”, Dokl. AN SSSR, 111 (1956), 47–49

[9] Borisov A.V., Mamaev I.S., Kilin A.A., “Gamiltonova dinamika zhidkikh i gazovykh samogravitiruyuschikh ellipsoidov”, Nelineinaya dinam., 4:4 (2008), 363–407

[10] Dolzhansky F.V., Fundamentals of geophysical hydrodynamics, Encyclopaedia of mathematical sciences, Springer, Berlin, 2013