A subclass of solutions for equations of a reduced atmospheric model
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 63-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with a special subclass of solutions for the three-dimensional system of ideal polytropic gas equations corresponding to an atmospheric model. The properties of such solutions are completely characterized by a nonlinear system of ordinary differential equations of higher order. We establish that, in contrast to the corresponding two-dimensional model, all its singular points are unstable. We also find some first integrals of this system. It is shown that, in the case of axial symmetry, it could be reduced to a single equation. The system is integrable in the particular case when the adiabatic exponent is equal to 2.
@article{VMUMM_2021_1_a11,
     author = {M. Turzynsky},
     title = {A subclass of solutions for equations of a reduced atmospheric model},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/}
}
TY  - JOUR
AU  - M. Turzynsky
TI  - A subclass of solutions for equations of a reduced atmospheric model
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 63
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/
LA  - ru
ID  - VMUMM_2021_1_a11
ER  - 
%0 Journal Article
%A M. Turzynsky
%T A subclass of solutions for equations of a reduced atmospheric model
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 63-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/
%G ru
%F VMUMM_2021_1_a11
M. Turzynsky. A subclass of solutions for equations of a reduced atmospheric model. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a11/