Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 40-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of motion of three connected rigid bodies in a homogeneous gravity force field (a generalization of the problem of motion of a gyroscope with gimbal suspension) is discussed. All steady motions of the system, their stability conditions and branching are found. The results are presented in the form of bifurcational diagrams.
@article{VMUMM_2020_6_a5,
     author = {A. V. Karapetyan and M. P. Chaplygina},
     title = {Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--48},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a5/}
}
TY  - JOUR
AU  - A. V. Karapetyan
AU  - M. P. Chaplygina
TI  - Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 40
EP  - 48
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a5/
LA  - ru
ID  - VMUMM_2020_6_a5
ER  - 
%0 Journal Article
%A A. V. Karapetyan
%A M. P. Chaplygina
%T Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 40-48
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a5/
%G ru
%F VMUMM_2020_6_a5
A. V. Karapetyan; M. P. Chaplygina. Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 40-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a5/