Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 19-26

Voir la notice de l'article provenant de la source Math-Net.Ru

For a family of non-autonomous dynamical systems continuously depending on a parameter, we present descriptions of the set of lower semicontinuity points and the set of upper semicontinuity points of the $\varepsilon$-capacity of its systems considered as a function of the parameter. For the set of points of upper semicontinuity, this description is complete if the parameter belongs to a complete metric separable zero-dimensional space.
@article{VMUMM_2020_6_a2,
     author = {A. N. Vetokhin},
     title = {Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--26},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 19
EP  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/
LA  - ru
ID  - VMUMM_2020_6_a2
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 19-26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/
%G ru
%F VMUMM_2020_6_a2
A. N. Vetokhin. Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 19-26. http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/