Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 19-26
Voir la notice de l'article provenant de la source Math-Net.Ru
For a family of non-autonomous dynamical systems continuously depending on a parameter, we present descriptions of the set of lower semicontinuity points and the set of upper semicontinuity points of the $\varepsilon$-capacity of its systems considered as a function of the parameter. For the set of points of upper semicontinuity, this description is complete if the parameter belongs to a complete metric separable zero-dimensional space.
@article{VMUMM_2020_6_a2,
author = {A. N. Vetokhin},
title = {Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {19--26},
publisher = {mathdoc},
number = {6},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/}
}
TY - JOUR AU - A. N. Vetokhin TI - Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 19 EP - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/ LA - ru ID - VMUMM_2020_6_a2 ER -
%0 Journal Article %A A. N. Vetokhin %T Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2020 %P 19-26 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/ %G ru %F VMUMM_2020_6_a2
A. N. Vetokhin. Structure of sets of semicontinuous points of $\varepsilon$-capacity of non-autonomous dynamical systems continuously depending on a parameter. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 19-26. http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a2/