Lagrangian representation of the family of Gordon--Schowalter objective derivatives at simple shear
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 63-66

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the one-parameter family of Gordon–Showalter objective derivatives, which includes the Oldroyd, Cotter–Rivlin, and Jaumann derivatives. For a simple shift, movable bases were found in which the considered differential operators are reduced to the total time derivatives of the tensor components. For all derivatives of the family under consideration, except for Oldroyd and Cotter–Rivlin derivatives, the vectors of bases lying in the shear plane rotate with a certain period, changing their length and mutual orientation.
@article{VMUMM_2020_6_a10,
     author = {E. D. Martynova},
     title = {Lagrangian representation of the family of {Gordon--Schowalter} objective derivatives at simple shear},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--66},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a10/}
}
TY  - JOUR
AU  - E. D. Martynova
TI  - Lagrangian representation of the family of Gordon--Schowalter objective derivatives at simple shear
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 63
EP  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a10/
LA  - ru
ID  - VMUMM_2020_6_a10
ER  - 
%0 Journal Article
%A E. D. Martynova
%T Lagrangian representation of the family of Gordon--Schowalter objective derivatives at simple shear
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 63-66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a10/
%G ru
%F VMUMM_2020_6_a10
E. D. Martynova. Lagrangian representation of the family of Gordon--Schowalter objective derivatives at simple shear. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2020), pp. 63-66. http://geodesic.mathdoc.fr/item/VMUMM_2020_6_a10/