On the prediction of high-temperature creep processes in metals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 25-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some issues related to the development of methods for forecasting creep processes are considered. For this purpose, the temporal equivalence principle, temperature-time analogy, stress-time analogy and other analogies and the modern relations between stresses and strains of the hereditary type in the form that allows the possibility of describing plastic deformations are used. The expressions for multiple reduction coefficients are obtained using the time equivalence principle. A brief description of the process using the method of analogies is given. An example of applying the concept of reduced time directly to the creep diagrams is given.
@article{VMUMM_2020_3_a2,
     author = {G. Z. Sharafutdinov},
     title = {On the prediction of high-temperature creep processes in metals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--31},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a2/}
}
TY  - JOUR
AU  - G. Z. Sharafutdinov
TI  - On the prediction of high-temperature creep processes in metals
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 25
EP  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a2/
LA  - ru
ID  - VMUMM_2020_3_a2
ER  - 
%0 Journal Article
%A G. Z. Sharafutdinov
%T On the prediction of high-temperature creep processes in metals
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 25-31
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a2/
%G ru
%F VMUMM_2020_3_a2
G. Z. Sharafutdinov. On the prediction of high-temperature creep processes in metals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a2/

[1] Rabotnov Yu. N., Polzuchest elementov konstruktsii, 2-e izd., Nauka, M., 2014

[2] Krivenyuk V. V., “Prognozirovanie dlitelnoi prochnosti zharoprochnykh nikelevykh splavov”, Metall i lite Ukrainy, 2009, no. 11–12, 20–25

[3] Urzhumtsev Yu. S., Maksimov R. D., Prognostika deformativnosti polimernykh materialov, Zinatne, Riga, 1975

[4] Sharafutdinov G. Z., “Radiatsionno-vremennaya analogiya i ee ispolzovanie v fotovyazkouprugosti”, Izv. AN SSSR. Mekhan. tverdogo tela, 1984, no. 5, 92–99

[5] Sharafutdinov G. Z., “Printsip vremennoi ekvivalentnosti i privedennoe vremya v protsessakh deformirovaniya tverdykh tel”, Izv. RAN. Mekhan. tverdogo tela, 1996, no. 5, 85–92

[6] Sharafutdinov G. Z., “Ob odnoi forme opredelyayuschikh sootnoshenii vyazkoplastichnosti”, Probl. prochnosti, 1985, no. 9, 97–102

[7] Sharafutdinov G. Z., “Ob opredelyayuschikh sootnosheniyakh vyazkouprugosti i vyazkoplastichnosti”, Izv. AN SSSR. Mekhan. tverdogo tela, 1987, no. 3, 125–133

[8] Rzhanitsin A. R., Teoriya polzuchesti, Stroiizdat, M., 1968

[9] Shevchenko Yu. N., Terekhov R. G., Fizicheskie uravneniya termovyazkoplastichnosti, Naukova dumka, Kiev, 1982 | MR

[10] Volterra V., Teoriya funktsionalov, integralnykh i integrodifferentsialnykh uravnenii, Fizmatlit, M., 1982

[11] Pobedrya B. E., “Ob adekvatnosti nelineinoi teorii vyazkouprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 65–69

[12] Levi P., Konkretnye problemy funktsionalnogo analiza, Nauka, M., 1967

[13] Pobedrya B. E., Chislennye metody v teorii uprugosti i plastichnosti, Izd-vo MGU, M., 1981 | MR

[14] Mors F., Teplofizika, Nauka, M., 1968

[15] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[16] Ferri Dzh., Vyazkouprugie svoistva polimerov, IL, M., 1963