Generalized realizability and the Markov principle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 60-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Various variants of the notion of the $V$-realizability for predicate formulas are defined, where indices of functions in the set $V$ are used for interpreting the implication and the universal quantifier. It is proved that Markov's principle is weakly $V$-realizable, not uniformly $V$-realizable, and uniformly $V$-realizable in any $V$-enumerable domain $M \subseteq \mathbb N$.
@article{VMUMM_2020_1_a8,
     author = {A. Yu. Konovalov},
     title = {Generalized realizability and the {Markov} principle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--64},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a8/}
}
TY  - JOUR
AU  - A. Yu. Konovalov
TI  - Generalized realizability and the Markov principle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 60
EP  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a8/
LA  - ru
ID  - VMUMM_2020_1_a8
ER  - 
%0 Journal Article
%A A. Yu. Konovalov
%T Generalized realizability and the Markov principle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 60-64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a8/
%G ru
%F VMUMM_2020_1_a8
A. Yu. Konovalov. Generalized realizability and the Markov principle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 60-64. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a8/