Generalized realizability and the Markov principle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 60-64
Cet article a éte moissonné depuis la source Math-Net.Ru
Various variants of the notion of the $V$-realizability for predicate formulas are defined, where indices of functions in the set $V$ are used for interpreting the implication and the universal quantifier. It is proved that Markov's principle is weakly $V$-realizable, not uniformly $V$-realizable, and uniformly $V$-realizable in any $V$-enumerable domain $M \subseteq \mathbb N$.
@article{VMUMM_2020_1_a8,
author = {A. Yu. Konovalov},
title = {Generalized realizability and the {Markov} principle},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {60--64},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a8/}
}
A. Yu. Konovalov. Generalized realizability and the Markov principle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 60-64. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a8/
[1] Zaslavskii I. D., Tseitin G. S., “K voprosu ob obobscheniyakh printsipa konstruktivnogo podbora”, Tr. Matem. in-ta AN SSSR, 72, 1964, 344–347
[2] Konovalov A. Yu., Plisko V. E., “O giperarifmeticheskoi realizuemosti”, Matem. zametki, 98:5 (2015), 725–746 | DOI | MR | Zbl
[3] Konovalov A. Yu., “Arifmeticheskaya realizuemost i bazisnaya logika”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 1, 52–56 | Zbl
[4] Plisko V. E., “Absolyutnaya realizuemost predikatnykh formul”, Izv. AN SSSP. Ser. matem., 47:2 (1983), 315–334 | MR