Motion of a puck on a rotating horizontal plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 37-41
We consider the motion of a puck on a horizontal plane rotating around a vertical axis with dry friction. We assume that, locally at each point of the puck's base, the Coulomb dry friction force acts. The resultant force and frictional torque are calculated according to the dynamically consistent model of contact stresses. This problem generalizes the problem of motion of a puck on a fixed plane and the motion of a disk (a puck of zero height) on a rotating plane. Invariant sets of the problem are found and their properties are studied. In the case of a sufficiently small Coulomb friction coefficient, a general solution of the equations of motion of the puck is constructed as a power series with respect to this coefficient.
@article{VMUMM_2019_5_a5,
author = {A. V. Karapetyan},
title = {Motion of a puck on a rotating horizontal plane},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {37--41},
year = {2019},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a5/}
}
A. V. Karapetyan. Motion of a puck on a rotating horizontal plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 37-41. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a5/
[1] Ivanov A.P., “Dinamicheski sovmestnaya model kontaktnykh napryazhenii pri ploskom dvizhenii tverdogo tela”, Prikl. matem. i mekhan., 73:2 (2009), 189–203 | MR | Zbl
[2] Salnikova T.V., Treschev D.V., Gallyamov S.R., “Dvizhenie svobodnoi shaiby po sherokhovatoi gorizontalnoi ploskosti”, Nelineinaya dinamika, 8:1 (2012), 83–100
[3] Karapetyan A.V., “O dvizhenii diska po vraschayuscheisya gorizontalnoi ploskosti s sukhim treniem”, Prikl. matem. i mekhan., 80:5 (2016), 535–540 | Zbl
[4] Grudev A.I., Ishlinskii A.Yu., Chernousko F.L., “O dvizhenii tochki po vraschayuscheisya sherokhovatoi ploskosti”, Prikl. matem. i mekhan., 53:3 (1989), 372–381 | MR | Zbl