Motion of a puck on a rotating horizontal plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 37-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the motion of a puck on a horizontal plane rotating around a vertical axis with dry friction. We assume that, locally at each point of the puck's base, the Coulomb dry friction force acts. The resultant force and frictional torque are calculated according to the dynamically consistent model of contact stresses. This problem generalizes the problem of motion of a puck on a fixed plane and the motion of a disk (a puck of zero height) on a rotating plane. Invariant sets of the problem are found and their properties are studied. In the case of a sufficiently small Coulomb friction coefficient, a general solution of the equations of motion of the puck is constructed as a power series with respect to this coefficient.
@article{VMUMM_2019_5_a5,
     author = {A. V. Karapetyan},
     title = {Motion of a puck on a rotating horizontal plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--41},
     publisher = {mathdoc},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a5/}
}
TY  - JOUR
AU  - A. V. Karapetyan
TI  - Motion of a puck on a rotating horizontal plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 37
EP  - 41
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a5/
LA  - ru
ID  - VMUMM_2019_5_a5
ER  - 
%0 Journal Article
%A A. V. Karapetyan
%T Motion of a puck on a rotating horizontal plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 37-41
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a5/
%G ru
%F VMUMM_2019_5_a5
A. V. Karapetyan. Motion of a puck on a rotating horizontal plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 37-41. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a5/