Splitting of initial boundary value problems in anisotropic linear elasticity theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 23-30
Voir la notice de l'article provenant de la source Math-Net.Ru
A number of questions on the decomposition of initial-boundary value problems of elasticity theories for some anisotropic media are considered. In particular, the initial-boundary problems of the micropolar (classical) theory of elasticity are presented with the help of the introduced tensor-block matrix operators (tensors-operators). In the case of an isotropic micropolar elastic medium (isotropic and transversally isotropic classical media) tensor-block matrix operators (tensors-operators) of cofactors corresponding to the tensor-block matrix operators (tensors-operators) of given initial-boundary value problems are obtained, which allows one to split the initial-boundary value problems.
@article{VMUMM_2019_5_a3,
author = {M. U. Nikabadze},
title = {Splitting of initial boundary value problems in anisotropic linear elasticity theory},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--30},
publisher = {mathdoc},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/}
}
TY - JOUR AU - M. U. Nikabadze TI - Splitting of initial boundary value problems in anisotropic linear elasticity theory JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 23 EP - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/ LA - ru ID - VMUMM_2019_5_a3 ER -
M. U. Nikabadze. Splitting of initial boundary value problems in anisotropic linear elasticity theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 23-30. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/