Splitting of initial boundary value problems in anisotropic linear elasticity theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 23-30
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of questions on the decomposition of initial-boundary value problems of elasticity theories for some anisotropic media are considered. In particular, the initial-boundary problems of the micropolar (classical) theory of elasticity are presented with the help of the introduced tensor-block matrix operators (tensors-operators). In the case of an isotropic micropolar elastic medium (isotropic and transversally isotropic classical media) tensor-block matrix operators (tensors-operators) of cofactors corresponding to the tensor-block matrix operators (tensors-operators) of given initial-boundary value problems are obtained, which allows one to split the initial-boundary value problems.
@article{VMUMM_2019_5_a3,
     author = {M. U. Nikabadze},
     title = {Splitting of initial boundary value problems in anisotropic linear elasticity theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--30},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/}
}
TY  - JOUR
AU  - M. U. Nikabadze
TI  - Splitting of initial boundary value problems in anisotropic linear elasticity theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 23
EP  - 30
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/
LA  - ru
ID  - VMUMM_2019_5_a3
ER  - 
%0 Journal Article
%A M. U. Nikabadze
%T Splitting of initial boundary value problems in anisotropic linear elasticity theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 23-30
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/
%G ru
%F VMUMM_2019_5_a3
M. U. Nikabadze. Splitting of initial boundary value problems in anisotropic linear elasticity theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 23-30. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a3/

[1] Vekua I.N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR

[2] Nikabadze M.U., “K postroeniyu sobstvennykh tenzornykh stolbtsov v mikropolyarnoi lineinoi teorii uprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 1, 30–39 | MR | Zbl

[3] Nikabadze M.U., Metod ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel. I, Dep. v VINITI RAN 20.05.14.,No 135-B2014, M., 2014 | Zbl

[4] Nikabadze M.U., Metod ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel. II, Dep. v VINITI RAN 20.05.14, No 136-B2014, M., 2014 | Zbl

[5] Nikabadze M.U., Razvitie metoda ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU, M., 2014

[6] Nikabadze M.U., Metod ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel, Dokt. dis., MAI, M., 2014

[7] Nikabadze M.U., “O nekotorykh voprosakh tenzornogo ischisleniya s prilozheniyami k mekhanike”, Sovremennaya matematika. Fundamentalnye napravleniya, 55, RUDN, M., 2015, 3–194

[8] Nikabadze M.U., “Topics on tensor calculus with applications to mechanics”, J. Math. Sci., 225:1 (2017), 1–194 | DOI | MR | Zbl

[9] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980

[10] Pobedrya B.E., Lektsii po tenzornomu analizu, Izd-vo MGU, M., 1986

[11] Eringen A.C., Microcontinuum Field Theories, v. 1, Foundation and solids, Springer-Verlag, N.Y., 1999 | MR | Zbl

[12] Baskakov V.A., Bestuzheva N.P., Konchakova N.A., Lineinaya dinamicheskaya teoriya termouprugikh sred s mikrostrukturoi, Izd-vo VGTU, Voronezh, 2001

[13] Nikabadze M.U., “To the problem of decomposition of the initial boundary value problems in mechanics”, J. Phys. Conf. Series, 936 (2017), 012056 | DOI