An extremal property of orbits in the Solar system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 75-79

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that the semi-major axes of the orbits of neighboring planets and of the orbits of large satellites of some planets in the Solar system are close to the orbit radii in the optimal solutions of the problem on a single-impulse transfer in a planetary system from a circular orbit to infinity with a gravitational maneuver.
@article{VMUMM_2019_3_a12,
     author = {V. A. Proshkin},
     title = {An extremal property of orbits in the {Solar} system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {75--79},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/}
}
TY  - JOUR
AU  - V. A. Proshkin
TI  - An extremal property of orbits in the Solar system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 75
EP  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/
LA  - ru
ID  - VMUMM_2019_3_a12
ER  - 
%0 Journal Article
%A V. A. Proshkin
%T An extremal property of orbits in the Solar system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 75-79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/
%G ru
%F VMUMM_2019_3_a12
V. A. Proshkin. An extremal property of orbits in the Solar system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 75-79. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/