An extremal property of orbits in the Solar system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 75-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is shown that the semi-major axes of the orbits of neighboring planets and of the orbits of large satellites of some planets in the Solar system are close to the orbit radii in the optimal solutions of the problem on a single-impulse transfer in a planetary system from a circular orbit to infinity with a gravitational maneuver.
@article{VMUMM_2019_3_a12,
     author = {V. A. Proshkin},
     title = {An extremal property of orbits in the {Solar} system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {75--79},
     year = {2019},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/}
}
TY  - JOUR
AU  - V. A. Proshkin
TI  - An extremal property of orbits in the Solar system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 75
EP  - 79
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/
LA  - ru
ID  - VMUMM_2019_3_a12
ER  - 
%0 Journal Article
%A V. A. Proshkin
%T An extremal property of orbits in the Solar system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 75-79
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/
%G ru
%F VMUMM_2019_3_a12
V. A. Proshkin. An extremal property of orbits in the Solar system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 75-79. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a12/

[1] Neto M., Zakon Titsiusa–Bode. Istoriya i teoriya, Mir, M., 1976

[2] Bovaird T., Lineweaver C. H., Exoplanet Predictions Based on the Generalised Titius–Bode Relation, 2013, arXiv: 1304.3341v4 [astro-ph.EP]

[3] Moltchanov A. M., “The resonant structure of the Solar System. The law of planetary distances”, Icarus, 8:2 (1968), 203–215 | DOI

[4] Abalakin V. K., Aksenov E. P., Grebenikov E. A., Demin V. G., Ryabov Yu. A., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike, Nauka, M., 1976

[5] Egorov V. A., “O nekotorykh zadachakh dinamiki poleta k Lune”, Uspekhi fiz. nauk, 63:1a (1957), 73–117 | DOI

[6] Egorov V. A., Prostranstvennaya zadacha dostizheniya Luny, Nauka, M., 1965

[7] G.S. Narimanov, M.K. Tikhonravov (red.), Osnovy teorii poleta kosmicheskikh apparatov, Mashinostroenie, M., 1972

[8] Hohmann W., Die Erreichbarkeit der Himmelskörper: Untersuchungen über das Raumfartproblem, Verlag von R. Oldenbourg, München, 1994