The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 69-71
Cet article a éte moissonné depuis la source Math-Net.Ru
The description of the set of lower semi-continuity points and the set of upper semi-continuity points of the topological entropy of the systems considered as a function on some parameter is obtained for a family of dynamical systems continuously dependent on parameter.
@article{VMUMM_2019_3_a10,
author = {A. N. Vetokhin},
title = {The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {69--71},
year = {2019},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/}
}
TY - JOUR AU - A. N. Vetokhin TI - The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 69 EP - 71 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/ LA - ru ID - VMUMM_2019_3_a10 ER -
%0 Journal Article %A A. N. Vetokhin %T The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 69-71 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/ %G ru %F VMUMM_2019_3_a10
A. N. Vetokhin. The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 69-71. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/
[1] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[2] Vetokhin A. N., “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:4 (2017), 448–453 | DOI | MR | Zbl
[3] Karpuk M. V., “Stroenie mnozhestva tochek polunepreryvnosti pokazatelei Lyapunova lineinykh differentsialnykh sistem, nepreryvno zavisyaschikh ot parametra”, Differents. uravneniya, 51:9 (2015), 1404–1408 | DOI | MR | Zbl