The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 69-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The description of the set of lower semi-continuity points and the set of upper semi-continuity points of the topological entropy of the systems considered as a function on some parameter is obtained for a family of dynamical systems continuously dependent on parameter.
@article{VMUMM_2019_3_a10,
     author = {A. N. Vetokhin},
     title = {The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--71},
     year = {2019},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 69
EP  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/
LA  - ru
ID  - VMUMM_2019_3_a10
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 69-71
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/
%G ru
%F VMUMM_2019_3_a10
A. N. Vetokhin. The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 69-71. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a10/

[1] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[2] Vetokhin A. N., “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:4 (2017), 448–453 | DOI | MR | Zbl

[3] Karpuk M. V., “Stroenie mnozhestva tochek polunepreryvnosti pokazatelei Lyapunova lineinykh differentsialnykh sistem, nepreryvno zavisyaschikh ot parametra”, Differents. uravneniya, 51:9 (2015), 1404–1408 | DOI | MR | Zbl