Convexity of a ball in the Gromov--Hausdorff space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 41-45

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the space $\mathcal{M}$ of all nonempty compact metric spaces considered up to isometry equipped with the Gromov–Hausdorff distance. We show that each ball in $\mathcal{M}$ with the center at the one-point space is convex in the weak sense, i.e., any two points of such a ball can be joined by a shortest curve that belongs to this ball, and is not convex in the strong sense: it is not true that every shortest curve joining the points of the ball belongs to this ball. It is also shown that a ball of sufficiently small radius with the center at a space of general position is convex in the weak sense.
@article{VMUMM_2018_6_a5,
     author = {D. P. Klibus},
     title = {Convexity of a ball in the {Gromov--Hausdorff} space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {41--45},
     publisher = {mathdoc},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a5/}
}
TY  - JOUR
AU  - D. P. Klibus
TI  - Convexity of a ball in the Gromov--Hausdorff space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 41
EP  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a5/
LA  - ru
ID  - VMUMM_2018_6_a5
ER  - 
%0 Journal Article
%A D. P. Klibus
%T Convexity of a ball in the Gromov--Hausdorff space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 41-45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a5/
%G ru
%F VMUMM_2018_6_a5
D. P. Klibus. Convexity of a ball in the Gromov--Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 41-45. http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a5/