@article{VMUMM_2018_6_a5,
author = {D. P. Klibus},
title = {Convexity of a ball in the {Gromov{\textendash}Hausdorff} space},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {41--45},
year = {2018},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a5/}
}
D. P. Klibus. Convexity of a ball in the Gromov–Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 41-45. http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a5/
[1] Edwards D., The Structure of Superspace, Studies in Topology, Academic Press, N.Y.–S.F.–L., 1975 | MR
[2] Gromov M., “Groups of polynomial growth and expanding maps”, Publ. math., 53 (1981), 53–73 | DOI | MR
[3] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR
[4] Ivanov A. O., Nikolaeva N. K., Tuzhilin A. A., The Gromov–Hausdorff metric on the space of compact metric spaces is strictly intrinsic, 2015, arXiv: 1504.03830 | MR
[5] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU, M., 2017
[6] Ivanov A. O., Iliadis S., Tuzhilin A. A., Realizations of Gromov–Hausdorff Distance, 2016, arXiv: 1603.08850 | MR
[7] Ivanov A. O., Tuzhilin A. A., Local Structure of Gromov–Hausdorff space near finite metric spaces in general position, 2016, arXiv: 1611.04484 | MR