Fast algorithm of square rooting in some odd characteгistic finite field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 8-14
Voir la notice de l'article provenant de la source Math-Net.Ru
It was proved that the complexity of square root computation in the Galois field $GF(3^s),$ $s=2^kr,$ is equal to $O(M(2^k)M(r)k+M(r)\log_2 r)+2^k kr^{1+o(1)},$ where $M(n)$ is the complexity of multiplication of polynomials of degree $n$ over fields with characteristics $3.$ The complexity of multiplication and division in the field $GF(3^s)$ is equal to $O(M(2^k)M(r))$ and $O(M(2^k)M(r))+r^{1+o(1)}$, respectively. If the basis in the field $GF(3^r)$ is determined by an irreducible binom over $GF(3)$ or is an optimal normal basis, then the summands $2^k kr^{1+o(1)}$ and $r^{1+o(1)}$ can be omitted. For $M(n)$ one may take $n\log_2 n\psi(n) $, where $\psi(n)$ grows slower than any iteration of the logarithm. If $k$ grows and $r$ is fixed, than all the estimates presented here have the form $O_r(M(s)\log_2 s)=s (\log_2 s)^2\psi(s).$
@article{VMUMM_2018_5_a1,
author = {S. B. Gashkov and I. B. Gashkov},
title = {Fast algorithm of square rooting in some odd characte{\cyrg}istic finite field},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--14},
publisher = {mathdoc},
number = {5},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a1/}
}
TY - JOUR AU - S. B. Gashkov AU - I. B. Gashkov TI - Fast algorithm of square rooting in some odd characteгistic finite field JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 8 EP - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a1/ LA - ru ID - VMUMM_2018_5_a1 ER -
S. B. Gashkov; I. B. Gashkov. Fast algorithm of square rooting in some odd characteгistic finite field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2018), pp. 8-14. http://geodesic.mathdoc.fr/item/VMUMM_2018_5_a1/