The weak form of normality
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 48-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological space is said to be paranormal if every countable discrete collection of closed sets $\{D_n: n\omega\}$ can be expanded to a locally finite collection of open sets $\{U_n: n\omega\}$, i.e., $D_n\subset U_n$ and $D_m\cap U_n\not=\emptyset$ if and only if $D_m=D_n$. It is proved that if $\mathcal{F}:$ Comp $ \to$ Comp is a normal functor of degree $\geq 3$ and the compact space ${\mathcal{F}}(X)$ is hereditarily paranormal, then the compact space $X$ is metrizable.
@article{VMUMM_2017_5_a7,
     author = {A. P. Kombarov},
     title = {The weak form of normality},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/}
}
TY  - JOUR
AU  - A. P. Kombarov
TI  - The weak form of normality
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 48
EP  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/
LA  - ru
ID  - VMUMM_2017_5_a7
ER  - 
%0 Journal Article
%A A. P. Kombarov
%T The weak form of normality
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 48-51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/
%G ru
%F VMUMM_2017_5_a7
A. P. Kombarov. The weak form of normality. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/