The weak form of normality
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 48-51
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A topological space is said to be paranormal if every countable discrete collection of closed sets $\{D_n: n\omega\}$ can be expanded to a locally finite collection of open sets $\{U_n: n\omega\}$, i.e., $D_n\subset U_n$ and $D_m\cap U_n\not=\emptyset$ if and only if $D_m=D_n$. It is proved that if $\mathcal{F}:$ Comp $ \to$ Comp is a normal functor of degree $\geq 3$ and the compact space ${\mathcal{F}}(X)$ is hereditarily paranormal, then the compact space $X$ is metrizable.
			
            
            
            
          
        
      @article{VMUMM_2017_5_a7,
     author = {A. P. Kombarov},
     title = {The weak form of normality},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/}
}
                      
                      
                    A. P. Kombarov. The weak form of normality. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/
