The weak form of normality
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 48-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A topological space is said to be paranormal if every countable discrete collection of closed sets $\{D_n: n<\omega\}$ can be expanded to a locally finite collection of open sets $\{U_n: n<\omega\}$, i.e., $D_n\subset U_n$ and $D_m\cap U_n\not=\emptyset$ if and only if $D_m=D_n$. It is proved that if $\mathcal{F}:$ Comp $ \to$ Comp is a normal functor of degree $\geq 3$ and the compact space ${\mathcal{F}}(X)$ is hereditarily paranormal, then the compact space $X$ is metrizable.
@article{VMUMM_2017_5_a7,
     author = {A. P. Kombarov},
     title = {The weak form of normality},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     year = {2017},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/}
}
TY  - JOUR
AU  - A. P. Kombarov
TI  - The weak form of normality
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 48
EP  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/
LA  - ru
ID  - VMUMM_2017_5_a7
ER  - 
%0 Journal Article
%A A. P. Kombarov
%T The weak form of normality
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 48-51
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/
%G ru
%F VMUMM_2017_5_a7
A. P. Kombarov. The weak form of normality. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2017), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2017_5_a7/

[1] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[2] Arkhangelskii A.V., Ponomarev V.I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[3] Nyikos P., “Problem section: Problem B”, Topol. Proc., 9 (1984), 367 | Zbl

[4] Kombarov A.P., “O tesnote i normalnosti $\Sigma$-proizvedenii”, Dokl. AN SSSR, 239 (1978), 775–778 | MR | Zbl

[5] Fedorchuk V.V., “K teoreme Katetova o kube”, Vestn. Mosk. un-ta. Matem. Mekhan., 1989, no. 4, 93–96 | Zbl

[6] Schepin E.V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi matem. nauk, 36 (1981), 3–62 | MR

[7] Katětov M., “Complete normality of cartesian products”, Fund. Math., 35 (1948), 271–274 | DOI | MR | Zbl

[8] Zhuraev T.F., “Normalnye funktory i metrizuemost bikompaktov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2000, no. 4, 8–11 | MR | Zbl

[9] Kombarov A.P., “K teoreme Katetova–Fedorchuka o kube”, Vestn. Mosk. un-ta. Matem. Mekhan., 2004, no. 5, 59–61 | Zbl

[10] Basmanov V.N., “O funktorakh, perevodyaschikh svyaznye $ANR$-bikompakty v odnosvyaznye prostranstva”, Vestn. Mosk. un-ta. Matem. Mekhan., 1984, no. 6, 40–42 | MR | Zbl