Analytic solution of the axisymmetric problem on deformation of an isotropic half-space with an elastically fixed boundary under the action of distributed load
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 67-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytical solution to the axisymmetric problem on the action of a distributed load on an isotropic half-space when the load is given by a function dependent on the radial coordinate is obtained. The surface of the half-space is elastically fixed outside the circular domain of load application, the shear stresses are absent along the entire boundary, and the stresses vanish at infinity. At the boundary and inside the elastic half-space, the solutions are represented by the formulas for all the components of the stress tensor and displacement vector.
@article{VMUMM_2016_5_a13,
     author = {S. V. Zaletov and N. S. Hapilova},
     title = {Analytic solution of the axisymmetric problem on deformation of an isotropic half-space with an elastically fixed boundary under the action of distributed load},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a13/}
}
TY  - JOUR
AU  - S. V. Zaletov
AU  - N. S. Hapilova
TI  - Analytic solution of the axisymmetric problem on deformation of an isotropic half-space with an elastically fixed boundary under the action of distributed load
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 67
EP  - 71
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a13/
LA  - ru
ID  - VMUMM_2016_5_a13
ER  - 
%0 Journal Article
%A S. V. Zaletov
%A N. S. Hapilova
%T Analytic solution of the axisymmetric problem on deformation of an isotropic half-space with an elastically fixed boundary under the action of distributed load
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 67-71
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a13/
%G ru
%F VMUMM_2016_5_a13
S. V. Zaletov; N. S. Hapilova. Analytic solution of the axisymmetric problem on deformation of an isotropic half-space with an elastically fixed boundary under the action of distributed load. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a13/

[1] Boussinesq J., Application eles Potentiels a l`Etude l`Equilibre et du Mouvement des Solides Elastiques, Gauthier–Villars, P., 1885 | MR

[2] Timoshenko S.P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975 | MR

[3] Khapilova N.S., Zalëtov S.V., “Osesimmetrichnaya deformatsiya izotropnogo poluprostranstva pri uprugom zakreplenii granitsy vne oblasti prilozheniya normalnoi nagruzki”, Sovremennye problemy mekhaniki sploshnoi sredy, Tr. XV Mezhdunar. konf., v. 1, Yuzhnyi federalnyi universitet, Rostov n/D, 2011, 246–250

[4] Khapilova N.S., Zalëtov V.V., Zalëtov S.V., “Osesimmetrichnaya zadacha o deistvii raspredelennoi nagruzki na izotropnoe poluprostranstvo s uprugozakreplennoi granitsei”, Tr. In-ta prikladnoi matematiki i mekhaniki NAN Ukrainy, 25 (2012), 251–259 | MR | Zbl

[5] Amenzade Yu.A., Teoriya uprugosti, Vysshaya shkola, M., 1971 | MR

[6] Uflyand Ya.S., Integralnye preobrazovaniya v zadachakh teorii uprugosti, Nauka, L., 1963 | MR

[7] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[8] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1978 | MR

[9] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984 | MR

[10] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1974 | MR

[11] Zalëtov S.V., “Osesimmetrichnaya zadacha ob opornom davlenii na deformiruemyi ugolnyi plast”, Nauch. vestn. Mosk. gos. gornogo un-ta, 46:1 (2014), 37–43 | MR