Finite element analysis of revolution shells by using high order triangle element of discretization with correcting Lagrange multipliers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 59-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithm of calculation of thin shells on a basis of a triangular finite element is described. The column of nodal variable parameters of this element additionaly contains correction Lagrange multipliers, which allows one to improve the conditions of compatibility between the elements in the variational formulation of the problem.
@article{VMUMM_2016_5_a11,
     author = {Yu. V. Klochkov and A. P. Nikolaev and O. V. Vakhnina},
     title = {Finite element analysis of revolution shells by using high order triangle element of discretization with correcting {Lagrange} multipliers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--63},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/}
}
TY  - JOUR
AU  - Yu. V. Klochkov
AU  - A. P. Nikolaev
AU  - O. V. Vakhnina
TI  - Finite element analysis of revolution shells by using high order triangle element of discretization with correcting Lagrange multipliers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 59
EP  - 63
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/
LA  - ru
ID  - VMUMM_2016_5_a11
ER  - 
%0 Journal Article
%A Yu. V. Klochkov
%A A. P. Nikolaev
%A O. V. Vakhnina
%T Finite element analysis of revolution shells by using high order triangle element of discretization with correcting Lagrange multipliers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 59-63
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/
%G ru
%F VMUMM_2016_5_a11
Yu. V. Klochkov; A. P. Nikolaev; O. V. Vakhnina. Finite element analysis of revolution shells by using high order triangle element of discretization with correcting Lagrange multipliers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/

[1] Zienkiewicz O.C., Taylor R.L., The Finite Element Method for Solid and Structural Mechanics, Elsevier, Oxford, 2005 | MR | Zbl

[2] Bate K.-Yu., Metody konechnykh elementov, Fizmatlit, M., 2010

[3] Postnov V.A., Kharkhurim I.Ya., Metod konechnykh elementov v raschetakh sudovykh konstruktsii, Sudostroenie, L., 1974

[4] Savenkova M.I., Sheshenin S.V., Zakalyukina I.M., “Sravnenie rezultatov konechno-elementnogo analiza s rezultatami asimptoticheskogo metoda osredneniya v zadache uprugoplasticheskogo izgiba”, Vestn. MGSU, 2013, no. 8, 42–50

[5] Novozhilov V.V., Teoriya tonkikh obolochek, Sudostroenie, L., 1962 | MR

[6] Klochkov Yu.V., Nikolaev A.P., Kiselev A.P., “Osobennosti formirovaniya matritsy zhestkosti treugolnogo konechnogo elementa razmerom 54$\times$54”, Izv. vuzov. Stroitelstvo, 1998, no. 2, 32–37

[7] Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006

[8] Kiseleva T.A., Klochkov Yu.V., Nikolaev A.P., “Sravnenie skalyarnoi i vektornoi form metoda konechnykh elementov na primere ellipticheskogo tsilindra”, Zhurn. vychisl. matem. i matem. fiz., 2015, no. 3, 418–428 | DOI | Zbl