Finite element analysis of revolution shells by using high order triangle element of discretization with correcting Lagrange multipliers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 59-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of calculation of thin shells on a basis of a triangular finite element is described. The column of nodal variable parameters of this element additionaly contains correction Lagrange multipliers, which allows one to improve the conditions of compatibility between the elements in the variational formulation of the problem.
@article{VMUMM_2016_5_a11,
     author = {Yu. V. Klochkov and A. P. Nikolaev and O. V. Vakhnina},
     title = {Finite element analysis of revolution shells by using  high order triangle element of discretization with correcting {Lagrange} multipliers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--63},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/}
}
TY  - JOUR
AU  - Yu. V. Klochkov
AU  - A. P. Nikolaev
AU  - O. V. Vakhnina
TI  - Finite element analysis of revolution shells by using  high order triangle element of discretization with correcting Lagrange multipliers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 59
EP  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/
LA  - ru
ID  - VMUMM_2016_5_a11
ER  - 
%0 Journal Article
%A Yu. V. Klochkov
%A A. P. Nikolaev
%A O. V. Vakhnina
%T Finite element analysis of revolution shells by using  high order triangle element of discretization with correcting Lagrange multipliers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 59-63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/
%G ru
%F VMUMM_2016_5_a11
Yu. V. Klochkov; A. P. Nikolaev; O. V. Vakhnina. Finite element analysis of revolution shells by using  high order triangle element of discretization with correcting Lagrange multipliers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a11/