Vibration points of rotating ``compexified'' triangle
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Differences and similarities of force fields generated by a complex dipole and a “classical” one are discussed. Asymptotic behavior of the real potential of the complex dipole is studied. The results of comparison are applied to the problem of motion of a material point in the field of attraction of a triangle uniformly rotating in its plane about its center of mass. Each vertex of the triangle is assumed to be a complex dipole. The existence of libration points is studied and sufficient conditions of their stability are investigated.
			
            
            
            
          
        
      @article{VMUMM_2016_3_a4,
     author = {D. V. Balandin and V. I. Nikonov},
     title = {Vibration points of rotating ``compexified'' triangle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--31},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/}
}
                      
                      
                    TY - JOUR AU - D. V. Balandin AU - V. I. Nikonov TI - Vibration points of rotating ``compexified'' triangle JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 25 EP - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/ LA - ru ID - VMUMM_2016_3_a4 ER -
D. V. Balandin; V. I. Nikonov. Vibration points of rotating ``compexified'' triangle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/
