Vibration points of rotating ``compexified'' triangle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Differences and similarities of force fields generated by a complex dipole and a “classical” one are discussed. Asymptotic behavior of the real potential of the complex dipole is studied. The results of comparison are applied to the problem of motion of a material point in the field of attraction of a triangle uniformly rotating in its plane about its center of mass. Each vertex of the triangle is assumed to be a complex dipole. The existence of libration points is studied and sufficient conditions of their stability are investigated.
@article{VMUMM_2016_3_a4,
     author = {D. V. Balandin and V. I. Nikonov},
     title = {Vibration points of rotating ``compexified'' triangle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--31},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/}
}
TY  - JOUR
AU  - D. V. Balandin
AU  - V. I. Nikonov
TI  - Vibration points of rotating ``compexified'' triangle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 25
EP  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/
LA  - ru
ID  - VMUMM_2016_3_a4
ER  - 
%0 Journal Article
%A D. V. Balandin
%A V. I. Nikonov
%T Vibration points of rotating ``compexified'' triangle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 25-31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/
%G ru
%F VMUMM_2016_3_a4
D. V. Balandin; V. I. Nikonov. Vibration points of rotating ``compexified'' triangle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/