@article{VMUMM_2016_3_a4,
author = {D. V. Balandin and V. I. Nikonov},
title = {Vibration points of rotating {\textquotedblleft}compexified{\textquotedblright} triangle},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--31},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/}
}
D. V. Balandin; V. I. Nikonov. Vibration points of rotating “compexified” triangle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/
[1] Beletskii V.V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmich. issledovaniya, 45:6 (2007), 435–442
[2] Beletskii V.V., Rodnikov A.V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmich. issledovaniya, 46:1 (2008), 42–50
[3] Scheeres D.J., Orbital motion in strongly perturbed environments: applications to asteroid, comet and planetary satellite orbiters, Springer, Berlin, 2012 | MR
[4] Beletskii V.V., Rodnikov A.V., “Tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae mnimogo rasstoyaniya mezhdu prityagivayuschimi tsentrami”, Nelineinaya dinamika, 8:5 (2012), 931–940
[5] Rodnikov A. V., “Komplanarnye tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae kompleksno-sopryazhennykh mass prityagivayuschikh tsentrov”, Nelineinaya dinamika, 9:4 (2013), 697–710
[6] Aksenov E.P., Grebenikov E.A., Demin V.G., “Obobschennaya zadacha dvukh nepodvizhnykh tsentrov i ee primenenie v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Astron. zhurn., 40:2 (1963), 363–375
[7] Kislik M.D., “Dvizhenie iskusstvennogo sputnika v normalnom gravitatsionnom pole Zemli”, Iskusstvennye sputniki Zemli, 1960, no. 4, 3–17
[8] Aksenov E.P., Grebenikov E. A., Demin V.G., “Primenenie obobschennoi zadachi dvukh nepodvizhnykh tsentrov v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Problemy dvizheniya iskusstvennykh nebesnykh tel, Izd-vo AN SSSR, M., 1963, 92–98
[9] Aksenov E.P., Grebenikov E.A., Demin V.G., “Ob ustoichivosti nekotorykh klassov orbit iskusstvennykh sputnikov Zemli”, Iskusstvennye sputniki Zemli, 1963, no. 16, 163–172
[10] Demin V.G., Dvizhenie iskusstvennogo sputnika v netsentralnom pole tyagoteniya, NITs “RKhD”, M.–Izhevsk, 2010
[11] Vinti J.P., “Theory of accurate intermediate orbit for satellite astronomy”, J. Res. Nat. Bur. Stand. B, 63:3 (1961), 169–201 | DOI | MR
[12] Landau L.D., Lifshits E.M., Teoriya polya, 2-e izd., pererab., Gostekhizdat, M., 1948 | MR
[13] Born M., Infeld L., “Foundations of the new field theory”, Proc. Roy. Soc. London. Ser. A, 144:852 (1934), 425–451 | DOI
[14] Sławianowski J.J., “Bertrand systems on spaces of constant sectional curvature. The action-angle analysis”, Repts Math. Phys., 46:3 (2000), 429–460 | DOI | MR
[15] Burov A.A., German A.D., Sulikashvili R.S., “Ob orbitalnom dvizhenii tetraedra-girostata”, Prikl. matem. i mekhan., 74:4 (2010), 594–609 | MR | Zbl
[16] Burov A.A., German A.D., Sulikashvili R.S., “Ob ustanovivshikhsya dvizheniyakh girostatov s ravnymi momentami inertsii v tsentralnom pole sil”, Prikl. matem. i mekhan., 75:5 (2011), 738–744 | MR | Zbl
[17] Nikonov V.I., “Otnositelnye ravnovesiya v zadache o dvizhenii treugolnika i tochki pod deistviem sil vzaimnogo prityazheniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 2, 45–51 | Zbl
[18] Nikonov V.I., “Suschestvovanie i ustoichivost statsionarnykh konfiguratsii v zadache o dvizhenii provolochnogo treugolnika i tochki pod deistviem sil vzaimnogo prityazheniya”, Prikl. matem. i mekhan., 79:3 (2015), 334–343
[19] Routh E.J., Treatise on the stability of a given state of motion, MacMillan, L., 1877
[20] Karapetyan A.V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998