Vibration points of rotating “compexified” triangle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Differences and similarities of force fields generated by a complex dipole and a “classical” one are discussed. Asymptotic behavior of the real potential of the complex dipole is studied. The results of comparison are applied to the problem of motion of a material point in the field of attraction of a triangle uniformly rotating in its plane about its center of mass. Each vertex of the triangle is assumed to be a complex dipole. The existence of libration points is studied and sufficient conditions of their stability are investigated.
@article{VMUMM_2016_3_a4,
     author = {D. V. Balandin and V. I. Nikonov},
     title = {Vibration points of rotating {\textquotedblleft}compexified{\textquotedblright} triangle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--31},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/}
}
TY  - JOUR
AU  - D. V. Balandin
AU  - V. I. Nikonov
TI  - Vibration points of rotating “compexified” triangle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 25
EP  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/
LA  - ru
ID  - VMUMM_2016_3_a4
ER  - 
%0 Journal Article
%A D. V. Balandin
%A V. I. Nikonov
%T Vibration points of rotating “compexified” triangle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 25-31
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/
%G ru
%F VMUMM_2016_3_a4
D. V. Balandin; V. I. Nikonov. Vibration points of rotating “compexified” triangle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a4/

[1] Beletskii V.V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmich. issledovaniya, 45:6 (2007), 435–442

[2] Beletskii V.V., Rodnikov A.V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmich. issledovaniya, 46:1 (2008), 42–50

[3] Scheeres D.J., Orbital motion in strongly perturbed environments: applications to asteroid, comet and planetary satellite orbiters, Springer, Berlin, 2012 | MR

[4] Beletskii V.V., Rodnikov A.V., “Tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae mnimogo rasstoyaniya mezhdu prityagivayuschimi tsentrami”, Nelineinaya dinamika, 8:5 (2012), 931–940

[5] Rodnikov A. V., “Komplanarnye tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae kompleksno-sopryazhennykh mass prityagivayuschikh tsentrov”, Nelineinaya dinamika, 9:4 (2013), 697–710

[6] Aksenov E.P., Grebenikov E.A., Demin V.G., “Obobschennaya zadacha dvukh nepodvizhnykh tsentrov i ee primenenie v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Astron. zhurn., 40:2 (1963), 363–375

[7] Kislik M.D., “Dvizhenie iskusstvennogo sputnika v normalnom gravitatsionnom pole Zemli”, Iskusstvennye sputniki Zemli, 1960, no. 4, 3–17

[8] Aksenov E.P., Grebenikov E. A., Demin V.G., “Primenenie obobschennoi zadachi dvukh nepodvizhnykh tsentrov v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Problemy dvizheniya iskusstvennykh nebesnykh tel, Izd-vo AN SSSR, M., 1963, 92–98

[9] Aksenov E.P., Grebenikov E.A., Demin V.G., “Ob ustoichivosti nekotorykh klassov orbit iskusstvennykh sputnikov Zemli”, Iskusstvennye sputniki Zemli, 1963, no. 16, 163–172

[10] Demin V.G., Dvizhenie iskusstvennogo sputnika v netsentralnom pole tyagoteniya, NITs “RKhD”, M.–Izhevsk, 2010

[11] Vinti J.P., “Theory of accurate intermediate orbit for satellite astronomy”, J. Res. Nat. Bur. Stand. B, 63:3 (1961), 169–201 | DOI | MR

[12] Landau L.D., Lifshits E.M., Teoriya polya, 2-e izd., pererab., Gostekhizdat, M., 1948 | MR

[13] Born M., Infeld L., “Foundations of the new field theory”, Proc. Roy. Soc. London. Ser. A, 144:852 (1934), 425–451 | DOI

[14] Sławianowski J.J., “Bertrand systems on spaces of constant sectional curvature. The action-angle analysis”, Repts Math. Phys., 46:3 (2000), 429–460 | DOI | MR

[15] Burov A.A., German A.D., Sulikashvili R.S., “Ob orbitalnom dvizhenii tetraedra-girostata”, Prikl. matem. i mekhan., 74:4 (2010), 594–609 | MR | Zbl

[16] Burov A.A., German A.D., Sulikashvili R.S., “Ob ustanovivshikhsya dvizheniyakh girostatov s ravnymi momentami inertsii v tsentralnom pole sil”, Prikl. matem. i mekhan., 75:5 (2011), 738–744 | MR | Zbl

[17] Nikonov V.I., “Otnositelnye ravnovesiya v zadache o dvizhenii treugolnika i tochki pod deistviem sil vzaimnogo prityazheniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 2, 45–51 | Zbl

[18] Nikonov V.I., “Suschestvovanie i ustoichivost statsionarnykh konfiguratsii v zadache o dvizhenii provolochnogo treugolnika i tochki pod deistviem sil vzaimnogo prityazheniya”, Prikl. matem. i mekhan., 79:3 (2015), 334–343

[19] Routh E.J., Treatise on the stability of a given state of motion, MacMillan, L., 1877

[20] Karapetyan A.V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998