The estimate of the number of permutationally-ordered sets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 24-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the number of $n$-element permutationally-ordered sets with the maximal antichain of length not exceeding $k$ is not greater than $\min\biggl\{{k^{2n}\over (k!)^2}, {(n-k+1)^{2n}\over ((n-k)!)^2}\biggr\}$. It is also proved that the number of permutations $\xi_k(n)$ of the numbers $\{1,\dots,n\}$ with the maximal decreasing subsequence of length not exceeding $k$ satisfies the inequality ${k^{2n}\over ((k-1)!)^2}.$ A review of papers focused on bijections and relations between pairs of linear orders, pairs of Young diagrams, two-dimensional arrays of positive integers, and matrices with integer elements is presented.
@article{VMUMM_2015_3_a4,
     author = {M. I. Kharitonov},
     title = {The estimate of the number of permutationally-ordered sets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/}
}
TY  - JOUR
AU  - M. I. Kharitonov
TI  - The estimate of the number of permutationally-ordered sets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 24
EP  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/
LA  - ru
ID  - VMUMM_2015_3_a4
ER  - 
%0 Journal Article
%A M. I. Kharitonov
%T The estimate of the number of permutationally-ordered sets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 24-28
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/
%G ru
%F VMUMM_2015_3_a4
M. I. Kharitonov. The estimate of the number of permutationally-ordered sets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/

[1] Schensted C., “Longest increasing and decreasing subsequences”, Can. J. Math., 13 (1961), 179–191 | DOI | MR | Zbl

[2] Latyshev V.N., “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya PI-algebr”, Uspekhi matem. nauk, 27:4 (166) (1972), 213–214 | MR | Zbl

[3] Belov A.Ya., Kharitonov M.I., “Otsenki vysoty v smysle Shirshova i na kolichestvo fragmentov malogo perioda”, Fund. i prikl. matem., 17:5 (2012), 21–54

[4] Chelnokov G.R., “O nizhnei otsenke kolichestva $k+1$-razbivaemykh perestanovok”, Model. i analiz inform. sistem, 14:4 (2007), 53–56

[5] Knuth D.E., “Permutations, matrices, and generalized Young tableux”, Pacif. J. Math., 34:3 (1970), 709–727 | DOI | MR | Zbl

[6] Gessel I.M., “Symmetric functions and P-recursiveness”, J. Combin. Theory. Ser. A, 53 (1990), 257–285 | DOI | MR | Zbl

[7] Specht W., “Gesetze in Ringen I”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[8] Latyshev V.N., Nematrichnye mnogoobraziya assotsiativnykh algebr, Dokt. dis., M., 1977

[9] Kemer A.R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 26:5 (1987), 597–641 | MR

[10] Belov A.Ya., “O neshpekhtovykh mnogoobraziyakh”, Fund. i prikl. matem., 5:1 (1999), 47–66 | MR | Zbl

[11] Grishin A.V., “Primery ne konechnoi baziruemosti $T$-prostranstv i $T$-idealov v kharakteristike 2”, Fund. i prikl. matem., 5:1 (1999), 101–118 | MR | Zbl

[12] Schigolev V.V., “Primery beskonechno baziruemykh $T$-idealov”, Fund. i prikl. matem., 5:1 (1999), 307–312 | MR