The estimate of the number of permutationally-ordered sets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 24-28
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the number of $n$-element permutationally-ordered sets with the maximal antichain of length not exceeding $k$ is not greater than $\min\biggl\{{k^{2n}\over (k!)^2}, {(n-k+1)^{2n}\over ((n-k)!)^2}\biggr\}$. It is also proved that the number of permutations $\xi_k(n)$ of the numbers $\{1,\dots,n\}$ with the maximal decreasing subsequence of length not exceeding $k$ satisfies the inequality ${k^{2n}\over ((k-1)!)^2}.$ A review of papers focused on bijections and relations between pairs of linear orders, pairs of Young diagrams, two-dimensional arrays of positive integers, and matrices with integer elements is presented.
@article{VMUMM_2015_3_a4,
author = {M. I. Kharitonov},
title = {The estimate of the number of permutationally-ordered sets},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {24--28},
publisher = {mathdoc},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/}
}
M. I. Kharitonov. The estimate of the number of permutationally-ordered sets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/