The estimate of the number of permutationally-ordered sets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 24-28

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the number of $n$-element permutationally-ordered sets with the maximal antichain of length not exceeding $k$ is not greater than $\min\biggl\{{k^{2n}\over (k!)^2}, {(n-k+1)^{2n}\over ((n-k)!)^2}\biggr\}$. It is also proved that the number of permutations $\xi_k(n)$ of the numbers $\{1,\dots,n\}$ with the maximal decreasing subsequence of length not exceeding $k$ satisfies the inequality ${k^{2n}\over ((k-1)!)^2}.$ A review of papers focused on bijections and relations between pairs of linear orders, pairs of Young diagrams, two-dimensional arrays of positive integers, and matrices with integer elements is presented.
@article{VMUMM_2015_3_a4,
     author = {M. I. Kharitonov},
     title = {The estimate of the number of permutationally-ordered sets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/}
}
TY  - JOUR
AU  - M. I. Kharitonov
TI  - The estimate of the number of permutationally-ordered sets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 24
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/
LA  - ru
ID  - VMUMM_2015_3_a4
ER  - 
%0 Journal Article
%A M. I. Kharitonov
%T The estimate of the number of permutationally-ordered sets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 24-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/
%G ru
%F VMUMM_2015_3_a4
M. I. Kharitonov. The estimate of the number of permutationally-ordered sets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a4/