Using the Dirac approach to simulate the rolling of a wheeled vehicle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 68-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of wheeled vehicle rolling is considered for the case when the rotation angles of the front wheels about the vertical axis are small. The small relative slip is taken into account in the model of contact between the wheels and the supporting plane. It is shown that, if the contact stiffness tends to infinity, we come to a nonclassical model defined by the longitudinal no-slip conditions and the primary Dirac constraints caused by the degeneracy of the Lagrangian of the original system.
@article{VMUMM_2014_3_a13,
     author = {A. V. Vlakhova},
     title = {Using the {Dirac} approach to simulate the rolling of a wheeled vehicle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {68--72},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a13/}
}
TY  - JOUR
AU  - A. V. Vlakhova
TI  - Using the Dirac approach to simulate the rolling of a wheeled vehicle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 68
EP  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a13/
LA  - ru
ID  - VMUMM_2014_3_a13
ER  - 
%0 Journal Article
%A A. V. Vlakhova
%T Using the Dirac approach to simulate the rolling of a wheeled vehicle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 68-72
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a13/
%G ru
%F VMUMM_2014_3_a13
A. V. Vlakhova. Using the Dirac approach to simulate the rolling of a wheeled vehicle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 68-72. http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a13/

[1] Kozlov V.V., “K voprosu o realizatsii svyazei v dinamike”, Prikl. matem. i mekhan., 56:4 (1992), 692–698 | MR | Zbl

[2] Novozhilov I.V., Fraktsionnyi analiz, Izd-vo MGU, M., 1995 | MR

[3] Arnold V.I., Kozlov V.V., Neishtadt A.I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2009

[4] Dirak P., Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[5] Nesterenko V.V., Chervyakov A.M., Singulyarnye lagranzhiany. Klassicheskaya dinamika i kvantovanie, Preprint OIYaI No R2-86-323, Dubna, 1986

[6] Novozhilov I.V., Pavlov I.S., “Priblizhennaya matematicheskaya model kolesnogo ekipazha”, Izv. RAN. Mekhan. tverdogo tela, 1997, no. 2, 196–204

[7] Vlakhova A.V., Novozhilov I.V., Smirnov I.A., “Matematicheskoe modelirovanie zanosa avtomobilya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 6, 44–50 | Zbl

[8] Andronov V.V., Zhuravlëv V.F., Sukhoe trenie v zadachakh mekhaniki, IKI, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[9] Tikhonov A.N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matem. sb., 31:3 (1952), 575–586 | Zbl

[10] Vasileva A.B., “Asimptoticheskie metody v teorii obyknovennykh differentsialnykh uravnenii s malymi parametrami pri starshikh proizvodnykh”, Zhurn. vychisl. matem. i matem. fiz., 3:4 (1963), 611–642 | Zbl