Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 60-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability problem for the relative equilibrium of a system in an orbit is considered. The system consists of two rigid bodies connected by a thin inextensible elastic rod. The stability problem for the steady motions is reduced to the minimization problem for the system's potential energy consisting of the potential energy of elastic, gravitational, and centrifugal forces.
@article{VMUMM_2014_1_a10,
     author = {A. V. Il'inskaya},
     title = {Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--65},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/}
}
TY  - JOUR
AU  - A. V. Il'inskaya
TI  - Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 60
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/
LA  - ru
ID  - VMUMM_2014_1_a10
ER  - 
%0 Journal Article
%A A. V. Il'inskaya
%T Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 60-65
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/
%G ru
%F VMUMM_2014_1_a10
A. V. Il'inskaya. Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 60-65. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/

[1] Lure A.I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961 | MR

[2] Beletskii V.V., Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965

[3] Filippov A.P., Kolebaniya deformiruemykh sistem, Mashinostroenie, M., 1970

[4] Morozov V.M., Ilinskaya A.V., “Ob ustoichivosti otnositelnogo ravnovesiya na krugovoi orbite dvukh tverdykh tel, soedinennykh massivnym uprugim sterzhnem”, Tr. X Mezhdunar. Chetaevskoi konf. “Analiticheskaya mekhanika, ustoichivost i upravlenie”, posvyaschennoi 110-letiyu N.G. Chetaeva (Kazan, 2012), v. 2, 383–392 | MR

[5] Sanyal A.K., Shen J., McClamroch N.H., “Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field”, Proc. 47th IEEE Conference on Decision and Control, Department of Aerospace Engineering, University of Michigan, Ann Arbor, 2003, 2798–2803

[6] Rumyantsev V.V., “O dvizhenii i ustoichivosti uprugogo tela s polostyu, soderzhaschei zhidkost”, Prikl. matem. i mekhan., 33:6 (1969), 946–957 | Zbl

[7] Morozov V.M., Rubanovskii V.N., Rumyantsev V.V., Samsonov V.A., “O bifurkatsii i ustoichivosti ustanovivshikhsya dvizhenii slozhnykh mekhanicheskikh sistem”, Prikl. matem. i mekhan., 37:3 (1973), 387–399 | Zbl

[8] Samsonov V.A., “O zadache minimuma funktsionala pri issledovanii ustoichivosti dvizheniya tela s zhidkim napolneniem”, Prikl. matem. i mekhan., 31:3 (1967), 523–526 | Zbl