Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 60-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability problem for the relative equilibrium of a system in an orbit is considered. The system consists of two rigid bodies connected by a thin inextensible elastic rod. The stability problem for the steady motions is reduced to the minimization problem for the system's potential energy consisting of the potential energy of elastic, gravitational, and centrifugal forces.
@article{VMUMM_2014_1_a10,
     author = {A. V. Il'inskaya},
     title = {Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--65},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/}
}
TY  - JOUR
AU  - A. V. Il'inskaya
TI  - Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 60
EP  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/
LA  - ru
ID  - VMUMM_2014_1_a10
ER  - 
%0 Journal Article
%A A. V. Il'inskaya
%T Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 60-65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/
%G ru
%F VMUMM_2014_1_a10
A. V. Il'inskaya. Relative equilibrium stability of a mechanical system with deformable elements in a circular orbit. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 60-65. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a10/