Piecewise periodicity structure estimates in Shirshov's height theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 10-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gelfand–Kirillov dimension of $l$-generated general matrixes is $(l-1)n^2+1.$ The minimal degree of the identity of this algebra is $2n$ as a corollary of Amitzur–Levitsky theorem. That is why the essential height of $A$ being an $l$-generated PI-algebra of degree $n$ over every set of words can be greater than $(l-1)n^2/4 + 1.$ We prove that if $A$ has a finite GK-dimension, then the number of lexicographically comparable subwords with the period $(n-1)$ in each monoid of $A$ is not greater than $(l-2)(n-1).$ The case of the subwords with the period $2$ is generalized to the proof of Shirshov's Height theorem.
@article{VMUMM_2013_1_a1,
     author = {M. I. Kharitonov},
     title = {Piecewise periodicity structure estimates in {Shirshov's} height theorem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--16},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a1/}
}
TY  - JOUR
AU  - M. I. Kharitonov
TI  - Piecewise periodicity structure estimates in Shirshov's height theorem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 10
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a1/
LA  - ru
ID  - VMUMM_2013_1_a1
ER  - 
%0 Journal Article
%A M. I. Kharitonov
%T Piecewise periodicity structure estimates in Shirshov's height theorem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 10-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a1/
%G ru
%F VMUMM_2013_1_a1
M. I. Kharitonov. Piecewise periodicity structure estimates in Shirshov's height theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 10-16. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a1/