Paradigm of max-factor and finite-dimensional representation of Lie algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 48-50

Voir la notice de l'article provenant de la source Math-Net.Ru

An isomorphism between formal power series algebra and dual space to universal enveloping algebra is presented. The image of maximal locally finite dimensional submodule under it lies in preimage of rational functions algebra under Borel transform.
@article{VMUMM_2012_4_a8,
     author = {Yu. P. Razmyslov and G. A. Pogudin},
     title = {Paradigm of max-factor and finite-dimensional representation of {Lie} algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--50},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a8/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
AU  - G. A. Pogudin
TI  - Paradigm of max-factor and finite-dimensional representation of Lie algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 48
EP  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a8/
LA  - ru
ID  - VMUMM_2012_4_a8
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%A G. A. Pogudin
%T Paradigm of max-factor and finite-dimensional representation of Lie algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 48-50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a8/
%G ru
%F VMUMM_2012_4_a8
Yu. P. Razmyslov; G. A. Pogudin. Paradigm of max-factor and finite-dimensional representation of Lie algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 48-50. http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a8/