Special framed Morse functions on surfaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 14-20
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be a smooth closed orientable surface. Let $F$ be the space of Morse functions on $M$, and $\mathbb{F}^1$ be the space of framed Morse functions, both endowed with the $C^\infty$-topology. The space $\mathbb{F}^0$ of special framed Morse functions is defined. We prove that the inclusion mapping $\mathbb{F}^0\hookrightarrow\mathbb{F}^1$ is a homotopy equivalence. In the case when at least $\chi(M)+1$ critical points of each function of $F$ are labeled, the homotopy equivalences $\widetilde{\mathbb{K}}\sim\widetilde{\mathcal{M}}$ and $F\sim\mathbb{F}^0\sim\mathscr{D}^0\times\widetilde{\mathbb{K}}$ are proved, where $\mathbb{K}$ is the complex of framed Morse functions, $\widetilde{\mathcal{M}}\approx\mathbb{F}^1/\mathscr{D}^0$ is the universal moduli space of framed Morse functions, $\mathscr{D}^0$ is the group of self-diffeomorphisms of $M$ homotopic to the identity.
@article{VMUMM_2012_4_a2,
author = {E. A. Kudryavtseva},
title = {Special framed {Morse} functions on surfaces},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {14--20},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a2/}
}
E. A. Kudryavtseva. Special framed Morse functions on surfaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 14-20. http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a2/