Special framed Morse functions on surfaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 14-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a smooth closed orientable surface. Let $F$ be the space of Morse functions on $M$, and $\mathbb{F}^1$ be the space of framed Morse functions, both endowed with the $C^\infty$-topology. The space $\mathbb{F}^0$ of special framed Morse functions is defined. We prove that the inclusion mapping $\mathbb{F}^0\hookrightarrow\mathbb{F}^1$ is a homotopy equivalence. In the case when at least $\chi(M)+1$ critical points of each function of $F$ are labeled, the homotopy equivalences $\widetilde{\mathbb{K}}\sim\widetilde{\mathcal{M}}$ and $F\sim\mathbb{F}^0\sim\mathscr{D}^0\times\widetilde{\mathbb{K}}$ are proved, where $\mathbb{K}$ is the complex of framed Morse functions, $\widetilde{\mathcal{M}}\approx\mathbb{F}^1/\mathscr{D}^0$ is the universal moduli space of framed Morse functions, $\mathscr{D}^0$ is the group of self-diffeomorphisms of $M$ homotopic to the identity.
@article{VMUMM_2012_4_a2,
     author = {E. A. Kudryavtseva},
     title = {Special framed {Morse} functions on surfaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--20},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Special framed Morse functions on surfaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 14
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a2/
LA  - ru
ID  - VMUMM_2012_4_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Special framed Morse functions on surfaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 14-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a2/
%G ru
%F VMUMM_2012_4_a2
E. A. Kudryavtseva. Special framed Morse functions on surfaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 14-20. http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a2/