Maximum of action for Hamiltonian systems with unilateral constraints
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 70-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Hamilton's variational principle for mechanical systems with unilateral constraints is considered. It is shown that the action functional attains its local maximum on the class of variations lying inside the area allowed for the movement. An example is given.
@article{VMUMM_2012_4_a15,
     author = {L. S. Otradnova},
     title = {Maximum of action for {Hamiltonian} systems with unilateral constraints},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {70--72},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a15/}
}
TY  - JOUR
AU  - L. S. Otradnova
TI  - Maximum of action for Hamiltonian systems with unilateral constraints
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 70
EP  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a15/
LA  - ru
ID  - VMUMM_2012_4_a15
ER  - 
%0 Journal Article
%A L. S. Otradnova
%T Maximum of action for Hamiltonian systems with unilateral constraints
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 70-72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a15/
%G ru
%F VMUMM_2012_4_a15
L. S. Otradnova. Maximum of action for Hamiltonian systems with unilateral constraints. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2012), pp. 70-72. http://geodesic.mathdoc.fr/item/VMUMM_2012_4_a15/