Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 58-61

Voir la notice de l'article provenant de la source Math-Net.Ru

It is stated that the inversion complexity $L_k^{-}(f^n_2)$ of monotone symmetric Boolean functions $f_2^n(x_1,\ldots,x_n)=\bigvee \limits_{1\leq i$ by $k$-self-correcting schemes in the basis $B=\{\,-\}$ for growing $n$ asymptotically equals $n\min\{k+1,p\}$ when the price of a reliable inventor $p\geq1$ and $k$ are fixed.
@article{VMUMM_2012_3_a12,
     author = {T. I. Krasnova},
     title = {Inversion complexity of self-correcting circuits for a certain sequence of {Boolean} functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--61},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/}
}
TY  - JOUR
AU  - T. I. Krasnova
TI  - Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 58
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/
LA  - ru
ID  - VMUMM_2012_3_a12
ER  - 
%0 Journal Article
%A T. I. Krasnova
%T Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 58-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/
%G ru
%F VMUMM_2012_3_a12
T. I. Krasnova. Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/