Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 58-61
Voir la notice de l'article provenant de la source Math-Net.Ru
It is stated that the inversion complexity $L_k^{-}(f^n_2)$ of monotone symmetric Boolean functions $f_2^n(x_1,\ldots,x_n)=\bigvee \limits_{1\leq i$ by $k$-self-correcting schemes in the basis $B=\{\,-\}$ for growing $n$ asymptotically equals
$n\min\{k+1,p\}$ when the price of a reliable inventor $p\geq1$ and $k$ are fixed.
@article{VMUMM_2012_3_a12,
author = {T. I. Krasnova},
title = {Inversion complexity of self-correcting circuits for a certain sequence of {Boolean} functions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {58--61},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/}
}
TY - JOUR AU - T. I. Krasnova TI - Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2012 SP - 58 EP - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/ LA - ru ID - VMUMM_2012_3_a12 ER -
%0 Journal Article %A T. I. Krasnova %T Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2012 %P 58-61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/ %G ru %F VMUMM_2012_3_a12
T. I. Krasnova. Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a12/