Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak g$ be a semisimple Lie algebra and $\mathfrak k$ be a reductive subalgebra in $\mathfrak g$. We say that a $\mathfrak g$-module $M$ is a $(\mathfrak g,\mathfrak k)$-module if $M$, considered as a $\mathfrak k$-module, is a direct sum of finite-dimensional $\mathfrak k$-modules. We say that a $(\mathfrak g,\mathfrak k)$-module $M$ is of finite type if all $\mathfrak k$-isotypic components of $M$ are finite-dimensional. In this article we prove that any simple $(\mathfrak g,\mathfrak k)$-module of finite type is holonomic. To a simple $\mathfrak g$-module $M$ one assigns invariants $\mathrm{V}(M)$, $\mathcal V(\operatorname{Loc}M)$ и $\mathrm{V}(M)$ reflecting the "directions of growth of $M$". We also prove that, for a given pair $(\mathfrak g,\mathfrak k)$, the set of possible invariants is finite.
@article{VMUMM_2012_3_a10,
author = {A. V. Petukhov},
title = {Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {51--55},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/}
}
A. V. Petukhov. Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/