Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak g$ be a semisimple Lie algebra and $\mathfrak k$ be a reductive subalgebra in $\mathfrak g$. We say that a $\mathfrak g$-module $M$ is a $(\mathfrak g,\mathfrak k)$-module if $M$, considered as a $\mathfrak k$-module, is a direct sum of finite-dimensional $\mathfrak k$-modules. We say that a $(\mathfrak g,\mathfrak k)$-module $M$ is of finite type if all $\mathfrak k$-isotypic components of $M$ are finite-dimensional. In this article we prove that any simple $(\mathfrak g,\mathfrak k)$-module of finite type is holonomic. To a simple $\mathfrak g$-module $M$ one assigns invariants $\mathrm{V}(M)$, $\mathcal V(\operatorname{Loc}M)$ и $\mathrm{V}(M)$ reflecting the "directions of growth of $M$". We also prove that, for a given pair $(\mathfrak g,\mathfrak k)$, the set of possible invariants is finite.
@article{VMUMM_2012_3_a10,
     author = {A. V. Petukhov},
     title = {Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/}
}
TY  - JOUR
AU  - A. V. Petukhov
TI  - Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 51
EP  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/
LA  - ru
ID  - VMUMM_2012_3_a10
ER  - 
%0 Journal Article
%A A. V. Petukhov
%T Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 51-55
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/
%G ru
%F VMUMM_2012_3_a10
A. V. Petukhov. Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/

[1] Beilinson A.A., “Localization of representations of reductive Lie algebras”, Proc. IMC (Warsaw, 1983), PWN, Warsaw, 1984, 699–710 | MR

[2] Hecht H., Milicic D., Schmidt W., Wolf J., “Localization and standard modules for real semisimple Lie groups I: The duality theorem”, Inv. Math., 90 (1987), 297–332 | DOI | MR

[3] Dixmier J., Algébres Enveloppantes, Gauthier-Villars, Paris, 1974 | MR

[4] Borel A., Algebraic $D$-modules, Perspectives in Mathematics, 2, Acad. Press, Inc., Boston, 1987 | MR

[5] Vinberg E.B., Popov V.L., “Teoriya invariantov”, Algebraicheskaya geometriya-4, Itogi nauki i tekhniki, VINITI AN SSSR, M., 1989, 137–314

[6] Beilinson A., Bernstein J., “Localisation de $\frak g$-modules”, C. r. acad. sci. Paris, 292 (1981), 15–18 | MR

[7] Barlet D., Kashiwara M., “Duality of D-modules on Flag manifolds”, Int. Math. Res. Notes, 23 (2000), 1243–1257 | DOI | MR

[8] Borho W., Brylinski J.-L., “Differential operators on homogeneous spaces. III”, Invent. Math., 80 (1985), 1–68 | DOI | MR

[9] Fernando S., “Lie algebra modules with finite-dimensional weight spaces. I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | MR

[10] Gabber O., “The integrability of the characteristic variety”, Amer. J. Math., 103 (1981), 445–468 | DOI | MR

[11] Joseph A., “On the variety of a highest weight module”, J. Algebra, 88 (1984), 238–278 | DOI | MR

[12] Chriss N., Ginzburg V., Representation theory and complex geometry, Birkhäuser Boston, Boston, 1997 | MR

[13] Penkov I., Serganova V., Zuckerman G., “On the existence of ($\mathfrak g, \mathfrak k)$-modules of finite type”, Duke Math. J., 125 (2004), 329–349 | DOI | MR