Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak g$ be a semisimple Lie algebra and $\mathfrak k$ be a reductive subalgebra in $\mathfrak g$. We say that a $\mathfrak g$-module $M$ is a $(\mathfrak g,\mathfrak k)$-module if $M$, considered as a $\mathfrak k$-module, is a direct sum of finite-dimensional $\mathfrak k$-modules. We say that a $(\mathfrak g,\mathfrak k)$-module $M$ is of finite type if all $\mathfrak k$-isotypic components of $M$ are finite-dimensional. In this article we prove that any simple $(\mathfrak g,\mathfrak k)$-module of finite type is holonomic. To a simple $\mathfrak g$-module $M$ one assigns invariants $\mathrm{V}(M)$, $\mathcal V(\operatorname{Loc}M)$ и $\mathrm{V}(M)$ reflecting the "directions of growth of $M$". We also prove that, for a given pair $(\mathfrak g,\mathfrak k)$, the set of possible invariants is finite.
@article{VMUMM_2012_3_a10,
     author = {A. V. Petukhov},
     title = {Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/}
}
TY  - JOUR
AU  - A. V. Petukhov
TI  - Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 51
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/
LA  - ru
ID  - VMUMM_2012_3_a10
ER  - 
%0 Journal Article
%A A. V. Petukhov
%T Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 51-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/
%G ru
%F VMUMM_2012_3_a10
A. V. Petukhov. Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/