@article{VMUMM_2012_3_a10,
author = {A. V. Petukhov},
title = {Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {51--55},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/}
}
A. V. Petukhov. Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a10/
[1] Beilinson A.A., “Localization of representations of reductive Lie algebras”, Proc. IMC (Warsaw, 1983), PWN, Warsaw, 1984, 699–710 | MR
[2] Hecht H., Milicic D., Schmidt W., Wolf J., “Localization and standard modules for real semisimple Lie groups I: The duality theorem”, Inv. Math., 90 (1987), 297–332 | DOI | MR
[3] Dixmier J., Algébres Enveloppantes, Gauthier-Villars, Paris, 1974 | MR
[4] Borel A., Algebraic $D$-modules, Perspectives in Mathematics, 2, Acad. Press, Inc., Boston, 1987 | MR
[5] Vinberg E.B., Popov V.L., “Teoriya invariantov”, Algebraicheskaya geometriya-4, Itogi nauki i tekhniki, VINITI AN SSSR, M., 1989, 137–314
[6] Beilinson A., Bernstein J., “Localisation de $\frak g$-modules”, C. r. acad. sci. Paris, 292 (1981), 15–18 | MR
[7] Barlet D., Kashiwara M., “Duality of D-modules on Flag manifolds”, Int. Math. Res. Notes, 23 (2000), 1243–1257 | DOI | MR
[8] Borho W., Brylinski J.-L., “Differential operators on homogeneous spaces. III”, Invent. Math., 80 (1985), 1–68 | DOI | MR
[9] Fernando S., “Lie algebra modules with finite-dimensional weight spaces. I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | MR
[10] Gabber O., “The integrability of the characteristic variety”, Amer. J. Math., 103 (1981), 445–468 | DOI | MR
[11] Joseph A., “On the variety of a highest weight module”, J. Algebra, 88 (1984), 238–278 | DOI | MR
[12] Chriss N., Ginzburg V., Representation theory and complex geometry, Birkhäuser Boston, Boston, 1997 | MR
[13] Penkov I., Serganova V., Zuckerman G., “On the existence of ($\mathfrak g, \mathfrak k)$-modules of finite type”, Duke Math. J., 125 (2004), 329–349 | DOI | MR