A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 35-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium is studied. A numerical method is proposed for the solution of such problems. Asymptotic distributions of stresses, deformations and displacements are obtained near the crack tip under the assumption that stresses and displacements are continuous on the interface.
@article{VMUMM_2012_2_a7,
     author = {N. V. Gaganova},
     title = {A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a7/}
}
TY  - JOUR
AU  - N. V. Gaganova
TI  - A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 35
EP  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a7/
LA  - ru
ID  - VMUMM_2012_2_a7
ER  - 
%0 Journal Article
%A N. V. Gaganova
%T A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 35-40
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a7/
%G ru
%F VMUMM_2012_2_a7
N. V. Gaganova. A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a7/

[1] Erdogan F., “Stress distribution in bonded dissimilar materials with crack”, J. Appl. Mech., 32 (1965), 403–410 | DOI

[2] England A.H., “A crack between dissimilar media”, J. Appl. Mech., 55 (1962), 400–402

[3] Rice J., “Elastic fracture mechanics concepts for interfacial cracks”, J. Appl. Mech., 55 (1988), 98–103 | DOI

[4] Shih C.F, Asaro R.J., “Elastic-plastic analysis of cracks on bimaterial interface. Part I: Small scale yielding”, J. Appl. Mech., 55 (1988), 299–319 | DOI

[5] Wang T.C., “Elastic-plastic asymptotic fields for cracks on bimaterial interfaces”, Eng. Fract. Mech., 37:3 (1990), 527–538 | DOI

[6] Yong-Li W., Zhi-Fa D., Guo-Chen L., “Asymptotic analysis for a crack on interface of damaged materials”, Int. J. Fract., 91 (1998), 47–60 | DOI

[7] Hongrong Y., Yong-Li W., Guo-Chen L., “Plane-stress asymptotic fields for interface crack between elastic and pressure-sensitive dilatant materials”, Eng. Fract. Mech., 60:2 (1998), 205–219 | DOI

[8] Lomakin E.V., Rabotnov Yu.N., “Sootnosheniya teorii uprugosti dlya izotropnogo raznomodulnogo tela”, Izv. AN SSSR. Mekhan. tverdogo tela, 1978, no. 6, 28–34

[9] Lomakin E.V., “Opredelyayuschie sootnosheniya deformatsionnoi teorii dlya dilatiruyuschikh sred”, Izv. RAN. Mekhan. tverdogo tela, 1991, no. 6, 66–75

[10] Rice J., Rosengren J.F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. and Phys. Solids, 16 (1968), 1–12 | DOI

[11] Hutchinson J.W., “Singular behaviour at the end of a tensile crack in a hardening material”, J. Mech. and Phys. Solids, 16 (1968), 13–31 | DOI

[12] Belyakova T.A., Lomakin E.V., “Uprugoplasticheskoe deformirovanie dilatiruyuschei sredy vblizi vershiny treschiny v usloviyakh ploskogo napryazhennogo sostoyaniya”, Izv. RAN. Mekhan. tverdogo tela, 1996, no. 5, 99–109