Steiner points in the space of continuous functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 26-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The set $\mathrm{St}(f_1,f_2,f_3)$ of Steiner points is described for any three functions $f_1,f_2,f_3$ in the space $C[\mathcal{K}]$ of real-valued continuous functions on a Hausdorff compact set $\mathcal{K}$. $\mathrm{St}(f_1,f_2,f_3)$ consists of all functions $s\in C[\mathcal{K}]$ such that the sum $\|f_1-s\|+\|f_2-s\|+\|f_3-s\|$ is minimal. It is proved that the set $\mathrm{St}(f_1,f_2,f_3)$ is not empty; the triples $f_1,f_2,f_3$ having a unique Steiner point are described; a Lipschitz selection is presented for the mapping $(f_1,f_2,f_3)\to\mathrm{St}(f_1,f_2,f_3)$. These results imply the description of all real two-dimensional Banach spaces possessing the following property: the sum $\|x_1-s\|+\|x_2-s\|+\|x_3-s\|$ is equal to the semiperimeter of triangle $x_1 x_2 x_3$ for any triple $x_1,x_2,x_3$ and some of its Steiner point $s=s(x_1,x_2,x_3)$.
@article{VMUMM_2011_6_a5,
     author = {B. B. Bednov},
     title = {Steiner points in the space of continuous functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {26--31},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a5/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - Steiner points in the space of continuous functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 26
EP  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a5/
LA  - ru
ID  - VMUMM_2011_6_a5
ER  - 
%0 Journal Article
%A B. B. Bednov
%T Steiner points in the space of continuous functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 26-31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a5/
%G ru
%F VMUMM_2011_6_a5
B. B. Bednov. Steiner points in the space of continuous functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 26-31. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a5/