Special embeddings of some disconnected graphs into Euclidean space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 54-56

Voir la notice de l'article provenant de la source Math-Net.Ru

This work considers such embeddings of graphs to $\mathbb{R}3$, that each line contains minimal number of points of the image. It is proved that for every embedding of graph containing disjoined union of two Kuratovski–Pontryagin graphs there exists a line containing four points of the image or more. So disjoint unions of Kuratovski–Pontryagin graphs are minimal $3$-unembedd able graphs.
@article{VMUMM_2011_2_a8,
     author = {K. I. Oblakov and T. A. Oblakova},
     title = {Special embeddings of some disconnected graphs into {Euclidean} space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--56},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/}
}
TY  - JOUR
AU  - K. I. Oblakov
AU  - T. A. Oblakova
TI  - Special embeddings of some disconnected graphs into Euclidean space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 54
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/
LA  - ru
ID  - VMUMM_2011_2_a8
ER  - 
%0 Journal Article
%A K. I. Oblakov
%A T. A. Oblakova
%T Special embeddings of some disconnected graphs into Euclidean space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 54-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/
%G ru
%F VMUMM_2011_2_a8
K. I. Oblakov; T. A. Oblakova. Special embeddings of some disconnected graphs into Euclidean space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 54-56. http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/