Special embeddings of some disconnected graphs into Euclidean space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 54-56
Voir la notice de l'article provenant de la source Math-Net.Ru
This work considers such embeddings of graphs to $\mathbb{R}3$, that each line contains minimal number of points of the image. It is proved that for every embedding of graph containing disjoined union of two Kuratovski–Pontryagin graphs there exists a line containing four points of the image or more. So disjoint unions of Kuratovski–Pontryagin graphs are minimal $3$-unembedd able graphs.
@article{VMUMM_2011_2_a8,
author = {K. I. Oblakov and T. A. Oblakova},
title = {Special embeddings of some disconnected graphs into {Euclidean} space},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {54--56},
publisher = {mathdoc},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/}
}
TY - JOUR AU - K. I. Oblakov AU - T. A. Oblakova TI - Special embeddings of some disconnected graphs into Euclidean space JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 54 EP - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/ LA - ru ID - VMUMM_2011_2_a8 ER -
K. I. Oblakov; T. A. Oblakova. Special embeddings of some disconnected graphs into Euclidean space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 54-56. http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a8/