First non-zero terms for the Taylor expansion at $1$ of the Conway potential function
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 57-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The Conway potential function $\nabla_L(t_1,\ldots,t_l)$ of an ordered oriented link $L=L_1\cup L_2\cup\ldots\cup L_l\subset S^3$ is considered. In general, this function is not determined by the linking numbers and the Conway potential functions of the components. However, the first two nonzero terms of the Taylor expansion at $1$ of the function $\nabla_L$ are determined by the linking numbers only. We give the explicit formulas for these terms using summation over trees with $l$ vertices.
@article{VMUMM_2011_1_a10,
author = {A. Yu. Buryak},
title = {First non-zero terms for the {Taylor} expansion at $1$ of the {Conway} potential function},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--59},
publisher = {mathdoc},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/}
}
TY - JOUR AU - A. Yu. Buryak TI - First non-zero terms for the Taylor expansion at $1$ of the Conway potential function JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 57 EP - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/ LA - ru ID - VMUMM_2011_1_a10 ER -
A. Yu. Buryak. First non-zero terms for the Taylor expansion at $1$ of the Conway potential function. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 57-59. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/