First non-zero terms for the Taylor expansion at $1$ of the Conway potential function
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 57-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The Conway potential function $\nabla_L(t_1,\ldots,t_l)$ of an ordered oriented link $L=L_1\cup L_2\cup\ldots\cup L_l\subset S^3$ is considered. In general, this function is not determined by the linking numbers and the Conway potential functions of the components. However, the first two nonzero terms of the Taylor expansion at $1$ of the function $\nabla_L$ are determined by the linking numbers only. We give the explicit formulas for these terms using summation over trees with $l$ vertices.
@article{VMUMM_2011_1_a10,
     author = {A. Yu. Buryak},
     title = {First non-zero terms for the {Taylor} expansion at $1$ of the {Conway} potential function},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--59},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/}
}
TY  - JOUR
AU  - A. Yu. Buryak
TI  - First non-zero terms for the Taylor expansion at $1$ of the Conway potential function
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 57
EP  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/
LA  - ru
ID  - VMUMM_2011_1_a10
ER  - 
%0 Journal Article
%A A. Yu. Buryak
%T First non-zero terms for the Taylor expansion at $1$ of the Conway potential function
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 57-59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/
%G ru
%F VMUMM_2011_1_a10
A. Yu. Buryak. First non-zero terms for the Taylor expansion at $1$ of the Conway potential function. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 57-59. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a10/