Two step estimators of the minimum distance type for parameters of the ARMA $(1,1)$ model
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 48-50
Voir la notice de l'article provenant de la source Math-Net.Ru
A new type of minimum distance estimate is constructed in this paper based on a preliminary estimate. We establish the asymptotic normality of the estimate using a uniform linear expansion of a randomly weighted residual empirical process. Such an expansion is valid in a non-standard neighborhood of the true parameter value. We also discuss asymptotic efficiency of the proposed estimate.
@article{VMUMM_2010_6_a8,
author = {I. G. \`Erlikh},
title = {Two step estimators of the minimum distance type for parameters of the {ARMA} $(1,1)$ model},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {48--50},
publisher = {mathdoc},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a8/}
}
TY - JOUR AU - I. G. Èrlikh TI - Two step estimators of the minimum distance type for parameters of the ARMA $(1,1)$ model JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 48 EP - 50 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a8/ LA - ru ID - VMUMM_2010_6_a8 ER -
I. G. Èrlikh. Two step estimators of the minimum distance type for parameters of the ARMA $(1,1)$ model. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 48-50. http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a8/