Algebraic independence over $\mathbb{Q}_p$ of values of analytic functions at points from $\mathbb{C}_p$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 24-27

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper formulates general theorems on the algebraic independence over $\mathbb{Q}_p$ of the values of analytic functions at points from $\mathbb{C}_p$ and their applications to particular examples.
@article{VMUMM_2010_6_a4,
     author = {O. Yu. Bazhenova and V. G. Chirskii},
     title = {Algebraic independence over $\mathbb{Q}_p$ of values of analytic functions at points from $\mathbb{C}_p$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--27},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a4/}
}
TY  - JOUR
AU  - O. Yu. Bazhenova
AU  - V. G. Chirskii
TI  - Algebraic independence over $\mathbb{Q}_p$ of values of analytic functions at points from $\mathbb{C}_p$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 24
EP  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a4/
LA  - ru
ID  - VMUMM_2010_6_a4
ER  - 
%0 Journal Article
%A O. Yu. Bazhenova
%A V. G. Chirskii
%T Algebraic independence over $\mathbb{Q}_p$ of values of analytic functions at points from $\mathbb{C}_p$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 24-27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a4/
%G ru
%F VMUMM_2010_6_a4
O. Yu. Bazhenova; V. G. Chirskii. Algebraic independence over $\mathbb{Q}_p$ of values of analytic functions at points from $\mathbb{C}_p$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 24-27. http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a4/