Stability of bars with variable rigidity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 65-69

Voir la notice de l'article provenant de la source Math-Net.Ru

A heterogeneous in length bar with a variable cross-section is considered. The axis of a bar, which joins the centers of gravity of all the cross-sections, is a straight line. The bar is compressed by a longitudinal force applied to the center of gravity of the boundary cross-section. The article describes the case of stability loss of the straight-line form of equilibrium of a bar, when both, linear and curved forms are possible. Approximate analytical formulas for critical compressive force in four cases of boundary conditions for periodically heterogeneous bar are obtained. In case of a bar with a stepped variation of its cross-section and which consists of only one period (the limiting case) the comparison of results, computed using obtained formulas, with exact solutions of stability equation known before is made.
@article{VMUMM_2010_6_a14,
     author = {V. I. Gorbachev and O. B. Moskalenko},
     title = {Stability of bars with variable rigidity},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a14/}
}
TY  - JOUR
AU  - V. I. Gorbachev
AU  - O. B. Moskalenko
TI  - Stability of bars with variable rigidity
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 65
EP  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a14/
LA  - ru
ID  - VMUMM_2010_6_a14
ER  - 
%0 Journal Article
%A V. I. Gorbachev
%A O. B. Moskalenko
%T Stability of bars with variable rigidity
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 65-69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a14/
%G ru
%F VMUMM_2010_6_a14
V. I. Gorbachev; O. B. Moskalenko. Stability of bars with variable rigidity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a14/