Distribution of large values of the argument of the Riemann zeta function on short intervals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 55-58

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the measure of the set of values $t\in(T,T+H\,]$ for $H=T^{27/82+\varepsilon}$, for which $|S (t)|\ge\lambda$ is obtained.
@article{VMUMM_2010_6_a11,
     author = {R. N. Boyarinov},
     title = {Distribution of large values of the argument of the {Riemann} zeta function on short intervals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--58},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/}
}
TY  - JOUR
AU  - R. N. Boyarinov
TI  - Distribution of large values of the argument of the Riemann zeta function on short intervals
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 55
EP  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/
LA  - ru
ID  - VMUMM_2010_6_a11
ER  - 
%0 Journal Article
%A R. N. Boyarinov
%T Distribution of large values of the argument of the Riemann zeta function on short intervals
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 55-58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/
%G ru
%F VMUMM_2010_6_a11
R. N. Boyarinov. Distribution of large values of the argument of the Riemann zeta function on short intervals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 55-58. http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/