Distribution of large values of the argument of the Riemann zeta function on short intervals
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 55-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An upper bound for the measure of the set of values $t\in(T,T+H\,]$ for $H=T^{27/82+\varepsilon}$, for which $|S (t)|\ge\lambda$ is obtained.
			
            
            
            
          
        
      @article{VMUMM_2010_6_a11,
     author = {R. N. Boyarinov},
     title = {Distribution of large values of the argument of the {Riemann} zeta function on short intervals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--58},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/}
}
                      
                      
                    TY - JOUR AU - R. N. Boyarinov TI - Distribution of large values of the argument of the Riemann zeta function on short intervals JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 55 EP - 58 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/ LA - ru ID - VMUMM_2010_6_a11 ER -
%0 Journal Article %A R. N. Boyarinov %T Distribution of large values of the argument of the Riemann zeta function on short intervals %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2010 %P 55-58 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/ %G ru %F VMUMM_2010_6_a11
R. N. Boyarinov. Distribution of large values of the argument of the Riemann zeta function on short intervals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2010), pp. 55-58. http://geodesic.mathdoc.fr/item/VMUMM_2010_6_a11/
