Recovering fourier coefficients of some functions and factorization of integer numbers
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 33-39
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that if a function defined on the segment $[-1,1]$ has sufficiently good approximation by partial sums of the Legendre polynomial expansion, then, given the function's Fourier coefficients $c_n$ for some subset of $n\in[n_1,n_2]$, one can approximately recover them for all $n\in[n_1,n_2]$. As an application, a new approach to factoring of integers is given.
			
            
            
            
          
        
      @article{VMUMM_2010_4_a5,
     author = {S. N. Preobrazhenskii},
     title = {Recovering fourier coefficients of some functions and factorization of integer numbers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {33--39},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/}
}
                      
                      
                    TY - JOUR AU - S. N. Preobrazhenskii TI - Recovering fourier coefficients of some functions and factorization of integer numbers JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 33 EP - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/ LA - ru ID - VMUMM_2010_4_a5 ER -
%0 Journal Article %A S. N. Preobrazhenskii %T Recovering fourier coefficients of some functions and factorization of integer numbers %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2010 %P 33-39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/ %G ru %F VMUMM_2010_4_a5
S. N. Preobrazhenskii. Recovering fourier coefficients of some functions and factorization of integer numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 33-39. http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/
