Recovering fourier coefficients of some functions and factorization of integer numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 33-39

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a function defined on the segment $[-1,1]$ has sufficiently good approximation by partial sums of the Legendre polynomial expansion, then, given the function's Fourier coefficients $c_n$ for some subset of $n\in[n_1,n_2]$, one can approximately recover them for all $n\in[n_1,n_2]$. As an application, a new approach to factoring of integers is given.
@article{VMUMM_2010_4_a5,
     author = {S. N. Preobrazhenskii},
     title = {Recovering fourier coefficients of some functions and factorization of integer numbers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {33--39},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/}
}
TY  - JOUR
AU  - S. N. Preobrazhenskii
TI  - Recovering fourier coefficients of some functions and factorization of integer numbers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 33
EP  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/
LA  - ru
ID  - VMUMM_2010_4_a5
ER  - 
%0 Journal Article
%A S. N. Preobrazhenskii
%T Recovering fourier coefficients of some functions and factorization of integer numbers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 33-39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/
%G ru
%F VMUMM_2010_4_a5
S. N. Preobrazhenskii. Recovering fourier coefficients of some functions and factorization of integer numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 33-39. http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/