Recovering fourier coefficients of some functions and factorization of integer numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 33-39
It is shown that if a function defined on the segment $[-1,1]$ has sufficiently good approximation by partial sums of the Legendre polynomial expansion, then, given the function's Fourier coefficients $c_n$ for some subset of $n\in[n_1,n_2]$, one can approximately recover them for all $n\in[n_1,n_2]$. As an application, a new approach to factoring of integers is given.
@article{VMUMM_2010_4_a5,
author = {S. N. Preobrazhenskii},
title = {Recovering fourier coefficients of some functions and factorization of integer numbers},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {33--39},
year = {2010},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/}
}
TY - JOUR AU - S. N. Preobrazhenskii TI - Recovering fourier coefficients of some functions and factorization of integer numbers JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 33 EP - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/ LA - ru ID - VMUMM_2010_4_a5 ER -
S. N. Preobrazhenskii. Recovering fourier coefficients of some functions and factorization of integer numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 33-39. http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a5/