Sign change of the function $S(t)$ on short intervals
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 51-53
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A theorem for the sign change of the argument of the Riemann zeta function $S(t)$ in the interval $(t-A,t+A)$ with $A=4,39\ln\ln\ln\ln T$ for each $t,$ $T\le t\le T+H$, excluding values from the set $E$ with measure ${\rm mes}(E) =O\left(H(\ln\ln T)^{-1}(\ln\ln\ln T)^{-0,5}\right)$ is proved.
			
            
            
            
          
        
      @article{VMUMM_2010_3_a12,
     author = {R. N. Boyarinov},
     title = {Sign change of the function $S(t)$ on short intervals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--53},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a12/}
}
                      
                      
                    R. N. Boyarinov. Sign change of the function $S(t)$ on short intervals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 51-53. http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a12/
