Sign change of the function $S(t)$ on short intervals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 51-53
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem for the sign change of the argument of the Riemann zeta function $S(t)$ in the interval $(t-A,t+A)$ with $A=4,39\ln\ln\ln\ln T$ for each $t,$ $T\le t\le T+H$, excluding values from the set $E$ with measure ${\rm mes}(E) =O\left(H(\ln\ln T)^{-1}(\ln\ln\ln T)^{-0,5}\right)$ is proved.
@article{VMUMM_2010_3_a12,
author = {R. N. Boyarinov},
title = {Sign change of the function $S(t)$ on short intervals},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {51--53},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a12/}
}
R. N. Boyarinov. Sign change of the function $S(t)$ on short intervals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 51-53. http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a12/