Uniform Morse lemma and isotopy criterion for Morse functions on surfaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2009), pp. 13-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a smooth compact (orientable or not) surface with or without a boundary. Let $\mathcal{D}_0\subset\operatorname{Diff}(M)$ be the group of diffeomorphisms homotopic to $\operatorname{id}_M$. Two smooth functions $f,g : M\to\mathbb{R}$ are called isotopic if $f=h_2\circ g\circ h_1$ for some diffeomorphisms $h_1\in\mathcal{D}_0$ and $h_2\in\operatorname{Diff}^+(\mathbb{R})$. Let $F$ be the space of Morse functions on $M$ which are constant on each boundary component and have no critical points on the boundary. A criterion for two Morse functions from $F$ to be isotopic is proved. For each Morse function $f\in F$, a collection of Morse local coordinates in disjoint circular neighbourhoods of its critical points is constructed, which continuously and $\operatorname{Diff}(M)$-equivariantly depends on $f$ in $C^\infty$-topology on $F$ (“uniform Morse lemma”). Applications of these results to the problem of describing the homotopy type of the space $F$ are formulated.
@article{VMUMM_2009_4_a2,
     author = {E. A. Kudryavtseva},
     title = {Uniform {Morse} lemma and isotopy criterion for {Morse} functions on surfaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--22},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Uniform Morse lemma and isotopy criterion for Morse functions on surfaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 13
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a2/
LA  - ru
ID  - VMUMM_2009_4_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Uniform Morse lemma and isotopy criterion for Morse functions on surfaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 13-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a2/
%G ru
%F VMUMM_2009_4_a2
E. A. Kudryavtseva. Uniform Morse lemma and isotopy criterion for Morse functions on surfaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2009), pp. 13-22. http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a2/