Lambek calculus with one division and one primitive type permitting empty antecedents
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 62-65
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following assertion is proved: a deduction rule given by a scheme is admissible in the Lambek calculus with one division $\mathrm{L}^*(\backslash)$ permitting empty antecedents if and only if it is admissible in the fragment of $\mathrm{L}^*(\backslash)$ with one primitive type $\mathrm{L}^*(\backslash; p_1)$. To do that, a type substitution is used which reduces the derivability in $\mathrm{L}^*(\backslash)$ to the derivability in $\mathrm{L}^*(\backslash;p_1)$.
			
            
            
            
          
        
      @article{VMUMM_2009_2_a12,
     author = {S. L. Kuznetsov},
     title = {Lambek calculus with one division and one primitive type permitting empty antecedents},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--65},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a12/}
}
                      
                      
                    TY - JOUR AU - S. L. Kuznetsov TI - Lambek calculus with one division and one primitive type permitting empty antecedents JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 62 EP - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a12/ LA - ru ID - VMUMM_2009_2_a12 ER -
S. L. Kuznetsov. Lambek calculus with one division and one primitive type permitting empty antecedents. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a12/
