A generalization of the Hilbert--Waring theorem
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 11-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let
$$
\mathbf Z(m,r)=\biggl\{n\mid n\neq\sum^s(n_i^r-m^r)
\quad\text{for all}\quad s\geq1,n_i\geq m\biggr\}
$$
and
$$
\mathbf N(m,r,s)=\biggl\{n\mid n\neq\sum^s n_i^r,n_i\geq m,n>
s\cdot m^r\biggr\}.
$$
Then, for any $m\geq0$, $r\geq2$ there exist the number, $g(m,r)$, and the
finite invariante set, $\mathbf Z(m,r)$, such that for any $s\geq g(m,r)$
$$
\mathbf N(m,r,s)=\{s\cdot m^r+z\mid z\in\mathbf Z(m,r)\},
$$
If $m=0$ then we obtain the classical Hilbert–Waring theorem.
			
            
            
            
          
        
      @article{VMUMM_1983_2_a2,
     author = {A. A. Zenkin},
     title = {A generalization of the {Hilbert--Waring} theorem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--19},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a2/}
}
                      
                      
                    A. A. Zenkin. A generalization of the Hilbert--Waring theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 11-19. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a2/
