On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1982), pp. 6-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distance between high energetic levels (eigenvalues) of the one-dimensional Schrödinger operator $H(\omega)=-\frac{d^2}{dt^2}+q(t,\omega)$, $t\in R_+^1$, $\omega\in\Omega$, where $q(t,\omega)$ is a stationary random process with certain conditions on smoothness and the rate of the decreasing of correlations. We obtain an asymptotic decomposition for the spectral split $\Delta_k=\sqrt{E_{k+1}}-\sqrt{E_k}$ when $k\to\infty$ where $E_k$, $E_{k+1}$ are neighbouring energetic levels. We find the appearence of repulsion in the case of high energetic levels. We find the appearence of repulsion in the case of high energetic levels.
@article{VMUMM_1982_4_a1,
     author = {L. N. Grenkova},
     title = {On the structure of the energy spectrum for the one-dimensional {Schr\"odinger} operator with random potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {6--10},
     publisher = {mathdoc},
     number = {4},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/}
}
TY  - JOUR
AU  - L. N. Grenkova
TI  - On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 6
EP  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/
LA  - ru
ID  - VMUMM_1982_4_a1
ER  - 
%0 Journal Article
%A L. N. Grenkova
%T On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 6-10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/
%G ru
%F VMUMM_1982_4_a1
L. N. Grenkova. On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1982), pp. 6-10. http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/