On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1982), pp. 6-10
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the distance between high energetic levels (eigenvalues) of the one-dimensional Schrödinger operator $H(\omega)=-\frac{d^2}{dt^2}+q(t,\omega)$, $t\in R_+^1$, $\omega\in\Omega$, where $q(t,\omega)$ is a stationary random process with certain conditions on smoothness and the rate of the decreasing of correlations. We obtain an asymptotic decomposition for the spectral split $\Delta_k=\sqrt{E_{k+1}}-\sqrt{E_k}$ when $k\to\infty$ where $E_k$, $E_{k+1}$ are neighbouring energetic levels. We find the appearence of repulsion in the case of high energetic levels. We find the appearence of repulsion in the case of high energetic levels.
@article{VMUMM_1982_4_a1,
author = {L. N. Grenkova},
title = {On the structure of the energy spectrum for the one-dimensional {Schr\"odinger} operator with random potential},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {6--10},
publisher = {mathdoc},
number = {4},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/}
}
TY - JOUR AU - L. N. Grenkova TI - On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 6 EP - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/ LA - ru ID - VMUMM_1982_4_a1 ER -
%0 Journal Article %A L. N. Grenkova %T On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1982 %P 6-10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/ %G ru %F VMUMM_1982_4_a1
L. N. Grenkova. On the structure of the energy spectrum for the one-dimensional Schr\"odinger operator with random potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1982), pp. 6-10. http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a1/