The central limit theorem for random motions of Euclidean space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 100-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Each element $g$ of the group $G$ of all Euclidean motions in $R^3$ can be represented as $g=au$, where $a$ is translation and $u$ is rotation. Consider a sequence $g_1,g_2,\dots, g_n,\dots$ of random independent identically distributed elements of $G$ and their product $$ g(n)=g_1g_2\dots g_n=a(n)u(n). $$ With natural restrictions the distribution of $\frac1{\sqrt n}a(n)$ tends to a normal distribution as $n\to\infty$, while the distribution of $u(n)$ tends to the normed Haar measure on the group of rotations.
@article{VMUMM_1967_6_a10,
     author = {V. N. Tutubalin},
     title = {The central limit theorem for random motions of {Euclidean} space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {100--108},
     publisher = {mathdoc},
     number = {6},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a10/}
}
TY  - JOUR
AU  - V. N. Tutubalin
TI  - The central limit theorem for random motions of Euclidean space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1967
SP  - 100
EP  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a10/
LA  - ru
ID  - VMUMM_1967_6_a10
ER  - 
%0 Journal Article
%A V. N. Tutubalin
%T The central limit theorem for random motions of Euclidean space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1967
%P 100-108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a10/
%G ru
%F VMUMM_1967_6_a10
V. N. Tutubalin. The central limit theorem for random motions of Euclidean space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 100-108. http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a10/