Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMP_2022_23_2_a3, author = {I.K. Marchevsky and S. R. Serafimova}, title = {Analytic and semi-analytic integration of logarithmic and {Newtonian} potentials and their gradients over line segments and rectilinear panels}, journal = {Numerical methods and programming}, pages = {137--152}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a3/} }
TY - JOUR AU - I.K. Marchevsky AU - S. R. Serafimova TI - Analytic and semi-analytic integration of logarithmic and Newtonian potentials and their gradients over line segments and rectilinear panels JO - Numerical methods and programming PY - 2022 SP - 137 EP - 152 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a3/ LA - ru ID - VMP_2022_23_2_a3 ER -
%0 Journal Article %A I.K. Marchevsky %A S. R. Serafimova %T Analytic and semi-analytic integration of logarithmic and Newtonian potentials and their gradients over line segments and rectilinear panels %J Numerical methods and programming %D 2022 %P 137-152 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a3/ %G ru %F VMP_2022_23_2_a3
I.K. Marchevsky; S. R. Serafimova. Analytic and semi-analytic integration of logarithmic and Newtonian potentials and their gradients over line segments and rectilinear panels. Numerical methods and programming, Tome 23 (2022) no. 2, pp. 137-152. http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a3/