Use of the computational topology to analyze the pore space changes during chemical dissolution
Numerical methods and programming, Tome 21 (2020) no. 1, pp. 41-55
Voir la notice de l'article provenant de la source Math-Net.Ru
A new algorithm for constructing the persistence diagrams to estimate the changes in the rock matrix topology during the chemical fluid-solid interaction. In the space of the persistence diagrams, a metric is introduced, which allows one to clusterize the diagrams in order to estimate their dissimilarities in the topology changes. This clusterization shows that the main parameters affecting the topology of the rock matrix are the reaction rate and the diffusion coefficient, whereas the fluid flow rate makes a smaller effect on the topology.
Keywords:
persistence homology, chemical dissolution.
@article{VMP_2020_21_1_a3,
author = {T. S. Khachkova and Ya. V. Bazaikin and V. V. Lisitsa},
title = {Use of the computational topology to analyze the pore space changes during chemical dissolution},
journal = {Numerical methods and programming},
pages = {41--55},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a3/}
}
TY - JOUR AU - T. S. Khachkova AU - Ya. V. Bazaikin AU - V. V. Lisitsa TI - Use of the computational topology to analyze the pore space changes during chemical dissolution JO - Numerical methods and programming PY - 2020 SP - 41 EP - 55 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a3/ LA - ru ID - VMP_2020_21_1_a3 ER -
%0 Journal Article %A T. S. Khachkova %A Ya. V. Bazaikin %A V. V. Lisitsa %T Use of the computational topology to analyze the pore space changes during chemical dissolution %J Numerical methods and programming %D 2020 %P 41-55 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a3/ %G ru %F VMP_2020_21_1_a3
T. S. Khachkova; Ya. V. Bazaikin; V. V. Lisitsa. Use of the computational topology to analyze the pore space changes during chemical dissolution. Numerical methods and programming, Tome 21 (2020) no. 1, pp. 41-55. http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a3/