Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMP_2016_17_4_a10, author = {A. V. Setukha and S. N. Fetisov}, title = {Peculiarities of the boundary integral equation method in the problem of electromagnetic wave scattering on ideally conducting bodies of small thickness}, journal = {Numerical methods and programming}, pages = {460--473}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a10/} }
TY - JOUR AU - A. V. Setukha AU - S. N. Fetisov TI - Peculiarities of the boundary integral equation method in the problem of electromagnetic wave scattering on ideally conducting bodies of small thickness JO - Numerical methods and programming PY - 2016 SP - 460 EP - 473 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a10/ LA - ru ID - VMP_2016_17_4_a10 ER -
%0 Journal Article %A A. V. Setukha %A S. N. Fetisov %T Peculiarities of the boundary integral equation method in the problem of electromagnetic wave scattering on ideally conducting bodies of small thickness %J Numerical methods and programming %D 2016 %P 460-473 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a10/ %G ru %F VMP_2016_17_4_a10
A. V. Setukha; S. N. Fetisov. Peculiarities of the boundary integral equation method in the problem of electromagnetic wave scattering on ideally conducting bodies of small thickness. Numerical methods and programming, Tome 17 (2016) no. 4, pp. 460-473. http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a10/