Numerical analysis of the FitzHugh–Nagumo model in a three-dimensional domain
Numerical methods and programming, Tome 15 (2014) no. 3, pp. 383-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The FitzHugh–Nagumo mathematical model of heart excitation is considered in the form of the initial boundary value problem for the evolution system of partial differential equations in a three-dimensional domain that corresponds to the actual geometry of the heart and its ventricles. A numerical analysis of excitation caused by a localized source is performed. The possibility of excitation from a source located in the cardiac muscle is discussed. The dependence of the velocity of excitation propagation and the width of its front on the model parameters is studied.
Keywords: FitzHugh–Nagumo model, numerical methods, heart excitation, evolution systems of equations, initial boundary value problems, partial differential equations, inverse problems.
@article{VMP_2014_15_3_a0,
     author = {I. A. Pavelchak},
     title = {Numerical analysis of the {FitzHugh{\textendash}Nagumo} model in a three-dimensional domain},
     journal = {Numerical methods and programming},
     pages = {383--387},
     year = {2014},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2014_15_3_a0/}
}
TY  - JOUR
AU  - I. A. Pavelchak
TI  - Numerical analysis of the FitzHugh–Nagumo model in a three-dimensional domain
JO  - Numerical methods and programming
PY  - 2014
SP  - 383
EP  - 387
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMP_2014_15_3_a0/
LA  - ru
ID  - VMP_2014_15_3_a0
ER  - 
%0 Journal Article
%A I. A. Pavelchak
%T Numerical analysis of the FitzHugh–Nagumo model in a three-dimensional domain
%J Numerical methods and programming
%D 2014
%P 383-387
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VMP_2014_15_3_a0/
%G ru
%F VMP_2014_15_3_a0
I. A. Pavelchak. Numerical analysis of the FitzHugh–Nagumo model in a three-dimensional domain. Numerical methods and programming, Tome 15 (2014) no. 3, pp. 383-387. http://geodesic.mathdoc.fr/item/VMP_2014_15_3_a0/