Virtual dimensions in the docking method based on tensor train decompositions
Numerical methods and programming, Tome 14 (2013) no. 3, pp. 292-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modification of the docking method based on tensor train decompositions using the idea of virtual dimensions adding is proposed to find the position of the energy global minimum for the ligand-protein system. The proposed method is compared with the TTDock (docking based on tensor train decompositions) program, which uses only physical dimensions. According to the testing results, the modified method is 5–10 times faster with the same level of reliability.
Keywords: tensor train decomposition; virtual dimensions; cross interpolation method; global optimization; docking; computer drug design.
@article{VMP_2013_14_3_a2,
     author = {D. A. Zheltkov and E. E. Tyrtyshnikov},
     title = {Virtual dimensions in the docking method based on tensor train decompositions},
     journal = {Numerical methods and programming},
     pages = {292--294},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_3_a2/}
}
TY  - JOUR
AU  - D. A. Zheltkov
AU  - E. E. Tyrtyshnikov
TI  - Virtual dimensions in the docking method based on tensor train decompositions
JO  - Numerical methods and programming
PY  - 2013
SP  - 292
EP  - 294
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_3_a2/
LA  - ru
ID  - VMP_2013_14_3_a2
ER  - 
%0 Journal Article
%A D. A. Zheltkov
%A E. E. Tyrtyshnikov
%T Virtual dimensions in the docking method based on tensor train decompositions
%J Numerical methods and programming
%D 2013
%P 292-294
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_3_a2/
%G ru
%F VMP_2013_14_3_a2
D. A. Zheltkov; E. E. Tyrtyshnikov. Virtual dimensions in the docking method based on tensor train decompositions. Numerical methods and programming, Tome 14 (2013) no. 3, pp. 292-294. http://geodesic.mathdoc.fr/item/VMP_2013_14_3_a2/