An iterative method for the solution of inverse shaping problems under creep conditions
Numerical methods and programming, Tome 14 (2013) no. 1, pp. 141-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse shaping problems are formulated in the form of quasistatic deformation of bodies. An iterative method for the solution of inverse shaping problems under creep is proposed in the case of structural elements design. The proposed method is implemented as a software package of engineering analysis.
Keywords: inverse shaping problems under creep; variational inequalities; sufficient uniqueness conditions; iterative methods; finite elements methods.
@article{VMP_2013_14_1_a16,
     author = {K. S. Bormotin},
     title = {An iterative method for the solution of inverse shaping problems under creep conditions},
     journal = {Numerical methods and programming},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a16/}
}
TY  - JOUR
AU  - K. S. Bormotin
TI  - An iterative method for the solution of inverse shaping problems under creep conditions
JO  - Numerical methods and programming
PY  - 2013
SP  - 141
EP  - 148
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a16/
LA  - ru
ID  - VMP_2013_14_1_a16
ER  - 
%0 Journal Article
%A K. S. Bormotin
%T An iterative method for the solution of inverse shaping problems under creep conditions
%J Numerical methods and programming
%D 2013
%P 141-148
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a16/
%G ru
%F VMP_2013_14_1_a16
K. S. Bormotin. An iterative method for the solution of inverse shaping problems under creep conditions. Numerical methods and programming, Tome 14 (2013) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a16/