Efficient numerical methods for the analysis of electromagnetic fields
Numerical methods and programming, Tome 13 (2012) no. 1, pp. 263-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

The large-size problem of electromagnetic fields synthesis (containing $10^8$ and more radiating objects) for holographic lithography needs is considered. The performance and scalability analysis carried out for some numerical methods on MVS-100K JSCC RAS and MIIT T4700 clusters showed that these methods cannot be used when creating a real-size chip on the state-of-the-art HPC systems. The specially designed Big Pixel method was implemented as a part of a parallel software package. This method allows calculating the Gabor hologram for the real-size chip topology on the existing clusters. An example of Gabor hologram synthesis for the topology consisting of $1.6\times 10^9$ elements is discussed.
Keywords: HPC; parallel algorithms; cluster computations; holography simulation.
@article{VMP_2012_13_1_a27,
     author = {D. Yu. Knyaz'kov},
     title = {Efficient numerical methods for the analysis of electromagnetic fields},
     journal = {Numerical methods and programming},
     pages = {263--270},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a27/}
}
TY  - JOUR
AU  - D. Yu. Knyaz'kov
TI  - Efficient numerical methods for the analysis of electromagnetic fields
JO  - Numerical methods and programming
PY  - 2012
SP  - 263
EP  - 270
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a27/
LA  - ru
ID  - VMP_2012_13_1_a27
ER  - 
%0 Journal Article
%A D. Yu. Knyaz'kov
%T Efficient numerical methods for the analysis of electromagnetic fields
%J Numerical methods and programming
%D 2012
%P 263-270
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a27/
%G ru
%F VMP_2012_13_1_a27
D. Yu. Knyaz'kov. Efficient numerical methods for the analysis of electromagnetic fields. Numerical methods and programming, Tome 13 (2012) no. 1, pp. 263-270. http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a27/