A parallel algorithm for solving strong separability problem
Numerical methods and programming, Tome 12 (2011) no. 4, pp. 423-434
Voir la notice de l'article provenant de la source Math-Net.Ru
An approach to solving the problem of separating two convex nonintersecting
polyhedrons by the layer of maximum thickness is proposed. A parallel algorithm
based on a method of using Fejer mappings is described. This algorithm admits
an efficient implementation on the massively parallel multiprocessor systems.
The results of computing experiments confirming the efficiency of the proposed
approach are discussed. This work was supported by the Russian Foundation
for Basic Research (project N 09-01-00546а).
Keywords:
strong separability; Fejer mappings; parallel programming; pseudoprojection; iterative process; pattern recognition.
@article{VMP_2011_12_4_a4,
author = {A. V. Ershova and I. M. Sokolinskaya},
title = {A parallel algorithm for solving strong separability problem},
journal = {Numerical methods and programming},
pages = {423--434},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a4/}
}
TY - JOUR AU - A. V. Ershova AU - I. M. Sokolinskaya TI - A parallel algorithm for solving strong separability problem JO - Numerical methods and programming PY - 2011 SP - 423 EP - 434 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a4/ LA - ru ID - VMP_2011_12_4_a4 ER -
A. V. Ershova; I. M. Sokolinskaya. A parallel algorithm for solving strong separability problem. Numerical methods and programming, Tome 12 (2011) no. 4, pp. 423-434. http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a4/