Tunnelling control by a magnetic field in the system of two
Numerical methods and programming, Tome 12 (2011) no. 2, pp. 262-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operation of a quantum device consisting of two concentric rings and controlling by an alternating magnetic field is demonstrated using a double-well potential model. The electron tunnelling between the rings is modelled by the method of splitting into physical processes. This method uses the previously calculated eigenvalues and eigenfunctions for various values of the magnetic field strength. The number of basis functions for the splitting method is evaluated for some different modelling cases.
Keywords: eigenvalue problem; asymmetric double-well potential; nonstationary Schroedinger equation; alternating magnetic field; electron tunnelling; concentric quantum rings; control of the wave packet position.
@article{VMP_2011_12_2_a6,
     author = {A. A. Bryzgalov and F. I. Karmanov},
     title = {Tunnelling control by a magnetic field in the system of two},
     journal = {Numerical methods and programming},
     pages = {262--274},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a6/}
}
TY  - JOUR
AU  - A. A. Bryzgalov
AU  - F. I. Karmanov
TI  - Tunnelling control by a magnetic field in the system of two
JO  - Numerical methods and programming
PY  - 2011
SP  - 262
EP  - 274
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a6/
LA  - ru
ID  - VMP_2011_12_2_a6
ER  - 
%0 Journal Article
%A A. A. Bryzgalov
%A F. I. Karmanov
%T Tunnelling control by a magnetic field in the system of two
%J Numerical methods and programming
%D 2011
%P 262-274
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a6/
%G ru
%F VMP_2011_12_2_a6
A. A. Bryzgalov; F. I. Karmanov. Tunnelling control by a magnetic field in the system of two. Numerical methods and programming, Tome 12 (2011) no. 2, pp. 262-274. http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a6/